期刊文献+

受限Lennard-Jones流体自扩散系数的分子动力学模拟

Molecular dynamics simulation of self-diffusion coefficient of confined Lennard-Jones fluid
下载PDF
导出
摘要 基于平衡态分子动力学(EMD)方法,建立了受限空间中的Lennard-Jones(LJ)流体自扩散模型.采用径向分布函数对LJ流体微观结构进行了表征,模拟了LJ流体在纳米尺度受限空间中的自扩散系数,并将其与相应的自由空间内LJ流体自扩散系数进行了比较,同时从分子水平分析了温度、密度和受限尺度对自扩散系数的影响.研究结果表明:受限空间内LJ流体自扩散系数随受限尺度的增大而逐渐增大;与自由空间一样,受限LJ流体自扩散系数也随温度的升高而近似线性增加,随密度的增加而逐渐减小,但始终小于相同温度、密度条件下自由空间所对应值.并且根据文献中的实验数据验证了该模型的准确性. A self-diffusion model of Lennard-Jones(LJ) fluid in confined space was developed by using equilibrium molecular dynamics(EMD) simulation method.The radial distribution function is utilized to analyze the LJ fluid microstructure.The self-diffusion coefficient of LJ fluid in the nanoscale confined space is calculated and compared with that in free space.The effects of temperature,density,and confined scale on the self-diffusion coefficient are all investigated and discussed at the molecular level.The results indicate that the LJ fluid self-diffusion coefficient in confined space increases with the increasing confined scale.Similar to that in free space,the LJ fluid self-diffusion coefficient in confined space also increases approximately in a linear fashion with temperature,while it decreases gradually with the increasing density.However,the LJ fluid self-diffusion coefficient in confined space is smaller than that in free space with the same temperature and density.In addition,the accuracy of the self-diffusion coefficient calculated by the present model is verified by the experimental data available in the literature.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第2期317-320,共4页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51076028)
关键词 分子动力学 自扩散系数 Lennard-Jones流体 径向分布函数 molecular dynamics self-diffusion coefficient Lennard-Jones fluid radial distribution function
  • 相关文献

参考文献13

  • 1Liang Z, Tsai H L. Molecular dynamics simulations of self-diffusion coefficient and thermal conductivity of methane at low and moderate densities [J]. Fluid Phase Equilibria, 2010, 297( 1 ) : 40 -45.
  • 2Cao B Y, Chen M, Guo Z Y. Effect of surface rough- ness on gas flow in microchannels by molecular dynam- ics simulation [J]. International Journal of Engineering Science, 2006, 44( 13/14): 927-937.
  • 3Sofos F D, Karakasidis T E, Liakopoulos A. Effects of wall roughness on flow in nanochannels [ J ]. Physical Review E, 2009, 79 (2) : 026305.
  • 4Alder B J, Wainwright T E. Phase transition for a hard sphere system [J]. Journal of Chemical Physics, 1957, 27(5) : 1208 - 1209.
  • 5Meier K, Laesecke A, Kabelac S. A molecular dynam- ics simulation study of the self-diffusion coefficient and viscosity of the Lennard-Jones fluid [J]. International Journal of Thermophysics, 2001, 22( 1 ) : 161 - 173.
  • 6Reis R A, Silva F C, Nobrega R, et al. Molecular dy- namics simulation data of self-diffusion coefficient for Lennard-Jones chain fluids [J]. Fluid Phase Equilibria, 2004, 221(1/2) : 25 -33.
  • 7Marinakis S, Samios J. The temperature and density dependence of fluid xenon self-diffusion coefficients: a comparison between experimental, theoretical and mo- lecular dynamics results [J]. Journal of Supercritical Fluids, 2005, 34 ( 1 ) : 81 - 89.
  • 8Zabaloy M S, Vasquez V R, Macedo E A. Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data [J]. Fluid Phase Equilibria, 2006, 242( 1 ) : 43 -56.
  • 9Bitsanis I, Magda J J, Tirrell M, et al. Molecular dynamics of flow in micropores [J]. Journal of Chemical Physics, 1987, 87(3): 1733-1750.
  • 10Pikunic J, Gubbins K E. Molecular dynamics simula- tion of simple fluids confined in realistic models of nanoporous carbons [ J ]. The European Physical Journal E, 2003, 12( 1 ): 35- 40.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部