期刊文献+

Regularity Theorems for Elliptic and Hypoelliptic Operators via the Global Relation

Regularity Theorems for Elliptic and Hypoelliptic Operators via the Global Relation
原文传递
导出
摘要 In this paper we give a new proof regarding the regularity of solutions to hypoelliptic partial differential equations with constant coefficients. On the assumption of existence, we provide a spectral representation for the solution and use this spectral representation to deduce regularity results. By exploiting analyticity properties of the terms within the spectral representation, we are able to give simple estimates for the size of the derivatives of the solutions and interpret them in terms of Gevrey classes.
作者 ASHTON A.C.L.
出处 《Journal of Partial Differential Equations》 2011年第1期83-96,共14页 偏微分方程(英文版)
  • 相关文献

参考文献20

  • 1Weyl H., The method of orthogonal projection in potential theory. Duke Mathematical Journal, 1940, 7(1): 411-444.
  • 2Petrowsky I. G., Sur l'analyticite des solutions des systemes d'equations differentielles, Re- cueil Mathematique, 1939, 5(1): 3-70.
  • 3Hormander L., On the theory of general partial differential operators, Acta mathematica, 1955, 94(1): 161-248.
  • 4Hormander L., Linear Partial Differential Operators, Berlin: Springer-Verlag, 1963.
  • 5Hormander L., The Analysis of Linear Partial Differential Operators 1: Distribution Theory and Fourier Analysis, Berlin: Springer Verlag, 1985.
  • 6HOrmander L., The Analysis of Linear Partial Differential Operators 2: Differential operators with constant coefficients, Berlin: Springer Verlag, 1985.
  • 7TrOves F., Linear partial differential equations with constant coefficients: existence, approximation, and regularity of solutions, Routledge, 1966.
  • 8Folland G. B., Introduction to Partial Differential Equations, Princeton Univ Pr, 1995.
  • 9Ehrenpreis L., Fourier Analysis in Several Complex Variables, New York: Wiley - Inter- science, 2000.
  • 10Henkin G. M., The method of integral representations in complex analysis, Itogi Nauki i Tekhniki. Seriya" Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya', 1985, 7: 23-124.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部