期刊文献+

基于混合先验的CT图像重建研究 被引量:1

Research on CT image reconstruction based on mixed prior algorithms
下载PDF
导出
摘要 在图像重建中,可以通过贝叶斯方法引入先验知识来抑制噪声提高重建的质量,提出了基于Gibbs先验和解剖中值先验混合的算法,该方法根据Gibbs先验分布和中值先验分布,先用基于Gibbs先验分布的算法多次迭代图像,再结合解剖结构先验,将以后每次迭代后的图像分割成不同的区域,将分割后的图像像素运用于中值先验。仿真实验表明,在相同条件和迭代次数下,该方法重建出来的图像更清晰,图像的相关系数比用Gibbs先验方法和中值先验方法重建出的图像的大。从实际实验数据上看,该方法重建的图像噪声更小,边缘更清晰。 In image reconstruction, the prior knowledge is introduced through Bayesian method to reduce noise and improve the quality of image reconstruction. In this paper, an algorithm is proposed, by which multiple iteration operation to images are done based on Gibbs prior distribution firstly, the images iterated every time are segmented into different regions combined with the anatomical prior technology secondly, and the pixel values of segmented images are used in the median root prior at last. Simulation results show that the new method can get much clearer reconstructed images and greater correlation coefficient of images than Gibbs prior or median root prior in the same conditions and iteration times. And the experimental data show that the noises of reconstructed images are much smaller and the edges are much clearer.
作者 何玲君
机构地区 中北大学
出处 《传感器世界》 2011年第3期16-19,共4页 Sensor World
基金 国家自然科学基金资助项目(项目编号:60772102)
关键词 先验知识分布 自适应正则 图像重建 prior knowledge distribution self-adaptiveregularization image reconstruction
  • 相关文献

参考文献8

  • 1Shepp L A, Vardi Y. Maximum likelihood reconstruction for emission tomography[J]. IEEE Transactions on Medical Imaging, 1982, MI-2: 113-122.
  • 2Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothing[J]. IEEE Trans Med Imaging 1990,9:439M46.
  • 3Alenius S. On noise reduction in iterative reconstruction algorithm for positron emission tomography: median root prior[D]. Tampere University of Technology; 1999.
  • 4Chlewicki W, Hermansen F and Hansen S B. Noise reduction and convergence of Bayesian algorithms with blobs based on the Huber function and median root prior[D].Phys. Med. Biol. 2004,49: 4717-30.
  • 5Green P J. On Use of the EM Algorithm for Penalized Likelihood Estimation[J]. Journal of the Royal Statistical Society Series B (Methodological), 1990, 52: 443-452.
  • 6Chung Chan, Roger Fulton, David Dagan Feng, Steven Meikle. Regularized image reconstruction with an anatomically adaptive prior for positron emission tomography[J]. Physics in Medicine and Biology, 2009,54:7379-7400.
  • 7Xu M, Luk WK, Culter PD, Digby WM. Local threshold for segmented attenuation correction of PET imaging of the thorax.[J] IEEE Trans Nucl Sci 1994;41:1532 7.
  • 8张扬,王士同,韩斌.基于改进模糊聚类算法鲁棒的图像分割[J].中国图象图形学报,2008,13(5):911-917. 被引量:16

二级参考文献8

  • 1Wang F. Fuzzy classiflcation of remote sensing images [ J]. IEEE Tranactions on Geoscience and Remote Sensing, 1990, 28 (2): 194-201.
  • 2Cheng H D,Chen Y H,Jiang X H. Thresholding using two dimensional histogram and fuzzy entropy principle [J]. IEEE Tranactions on Image Processing, 2000, 9(4): 732-735.
  • 3Zhao M S, Fu A, Yan H. A technique of three-level thresholding based on probabilistic partition and fuzzy three-partition [ J]. IEEE Transactions on Fuzzy Systems, 2001, 9(3) : 469-479.
  • 4Bezdek J C. A convergence theorem for the fuzzy ISODATA clustering algorithms [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2 ( 1 ) : 1-8.
  • 5Rnnkler T A, Bezdek J C. Alternating cluster estimation: a new tool for clustering and function approximation [J]. IEEE Transactions on Fuzzy Systems, 1999, 7 (4): 377-393.
  • 6Hoppner F, Klawonn F. Improved fuzzy partitions for fuzzy regression models [ J]. International Journal of Approximate Reasoning, 2003,32 (2) : 85-102.
  • 7Liew A W C, Yan H, Law N F. Image segmentation based on adaptive cluster prototype estimation [ J ]. IEEE Transactions on Fuzzy Systems, 2005, 13(4) : 444-453.
  • 8Krishnapuram R, Keler J M. A possibilistic approach to clustering [J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2) : 98-110.

共引文献15

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部