期刊文献+

ENAS-RIF图像复原算法 被引量:6

ENAS-RIF algorithm for image restoration
下载PDF
导出
摘要 大气湍流严重影响天文、遥感等光学观测的成像效果,必须进行图像复原处理后才能获取更清晰的图像。为了提高图像复原效果,提出了一种基于可靠支持域和改进代价函数的增强型非负性和有限支撑域的递归逆滤波器(ENAS-RIF)图像复原算法。首先,利用Curvelet去噪进行图像平滑的预处理,抑制图像噪声;然后利用图像阈值分割和形态学膨胀操作获取目标的可靠支持域,以加快算法的的收敛速度;再根据支持域提取结果将不均匀背景全部设置为背景均值,解决背景不均匀的局限;最后在代价函数中增加目标边缘的保持约束项,并进一步引入单调平滑的对数代价函数改进算法的收敛性和稳定性。实验结果表明,改进后的ENAS-RIF算法具有更好的复原效果和更快的收敛速度。 Imaging of objects is inevitably encountered by space-based,ground-based working in the atmospheric turbulence environment,such as those used in astronomy,remote sensing and so on.The observed images are seriously blurred.The restoration is required for reconstruction turbulence degraded images.In order to enhance the performance of image restoration,a novel enhanced nonnegativity and support constrants recursive inverse filtering(ENAS-RIF) algorithm was presented,which was based on the reliable support region and enhanced cost function.Firstly,the Curvelet denoising algorithm was used to weaken image noise.Secondly,the reliable object support region estimation was used to accelerate the algorithm convergence.Then,the average gray was set as the gray of image background pixel.Finally,an object construction limit and the logarithm function were add to enhance algorithm stability.The experimental results prove that the convergence speed of the novel ENAS-RIF algorithm is faster than that of NAS-RIF algorithm and it is better in image restoration.
出处 《红外与激光工程》 EI CSCD 北大核心 2011年第3期553-558,共6页 Infrared and Laser Engineering
基金 国家自然科学基金资助项目(41001237) 中国博士后科学基金资助项目(20100470110)
关键词 图像复原 可靠支持域 曲波变换 代价函数 image restoration reliable support region Curvelet transform cost function
  • 相关文献

参考文献9

  • 1付长军,许东,赵剡.湍流退化图像的最大熵盲目复原方法[J].红外与激光工程,2008,37(3):542-546. 被引量:6
  • 2洪汉玉,何成剑,陈以超,易新建,张天序.基于各向异性规整化的总变分盲复原算法研究[J].红外与激光工程,2007,36(1):118-122. 被引量:8
  • 3Schock M. Atmospheric turbulence characterization with the Keck adaptive optics systems [J]. App Opt, 2003, 42 (19): 3705-3720.
  • 4Kundur D, Hatzinakos D. A novel blind deconvolution scheme for image restoration using recursive filtering [J]. lggg Trans Signal Processing, 1998, 46(2): 375-390.
  • 5Chambers J A. An enhanced NAS-RIF algorithm for blind image deconvolution [J]. IEEE Trans Image Processing, 1999, 8(7): 988-992.
  • 6Kundur D. Blind deconvolution of still images using recursive inverse filtering [D]. Toronto: University of Toronto, 1995.
  • 7Kundur D, Hatzinakos D. Blind image deconvolution [J]. IEEE Trans Signal Processing Mag, 1996, 13: 43-64.
  • 8Mugnier L M. MISTRAL: a myopic edge-preserving image restoration method, with application to astronomical adaptive- optics-corrected long-exposure images [J]. J Opt Soc Amer A, 2004, 21(10): 1841-1854.
  • 9刘宁,楼顺天.一种改进的非负限定性支持域算法[J].西安电子科技大学学报,2007,34(2):246-248. 被引量:1

二级参考文献26

  • 1洪汉玉,张天序.基于多分辨率盲目去卷积的气动光学效应退化图像复原算法[J].计算机学报,2004,27(7):952-963. 被引量:22
  • 2何成剑,洪汉玉,张天序,易新建.基于双重规整化的气动退化图像盲复原算法[J].红外与激光工程,2007,36(2):236-239. 被引量:5
  • 3ZHANG Tian-xu, HONG Han-yu. Restoration algorithms for turbulence-degraded images based on the optimized estimation of the discrete values of overall PSFs [J]. Optical Engineering,2005, 44(1):1-17.
  • 4YOU Y L, KAVEH M, Blind image restoration by anisotropic regularization [J]. IEEE Trails an Image Processing, 1999, 8 (3):396-407.
  • 5RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithm [J]. Physiea D,1992, 60(2):259-268.
  • 6CHANT F, WONG C K. Total variation blind deconvolution[J]. IEEE Transactions On Image Processing, 1998, 7(3):370-375.
  • 7PARK S C,KANG M G.Noise-adaptive edge-preserving image restoration algorithm [J]. Opt Eng, 2000, 39(12): 3124-3136.
  • 8VOGEL C R, OMAN M E. Iterative methods for variation denoising [J]. SIAM J Sd Comput, 1996, 17(1): 227-238.
  • 9Ayers G R,Dainty J C.Iterative Blind Deconvolution Method and Its Applications[J].Optics Letter,1988,13(7):547-549.
  • 10McCallum C.Blind Deconvolution by Simulated Annealing[J].Optics Communications,1990,75(2):101-105.

共引文献12

同被引文献51

  • 1李红蕾,凌捷,徐少强.关于图象质量评价指标PSNR的注记[J].广东工业大学学报,2004,21(3):74-78. 被引量:35
  • 2李勇,李平,文玉梅.光学成像系统空间移变降质的最小二乘约束复原[J].中国图象图形学报,2006,11(8):1180-1187. 被引量:8
  • 3谢文科,姜宗福.气动光学畸变波前的本征正交分解和低阶近似[J].中国激光,2007,34(4):491-495. 被引量:8
  • 4Jumper E J, Fitzgerald E J. Recent advances in aero-op- tics [ J ]. Progress in Aerospace Science, 2001, 37- 299 - 399.
  • 5Kundur D, Hatzinakos D. A novel blind deconvolution scheme for image restoration using recursive filtering[ J]. IEEE Trans Signal Processing, 1998,46 ( 2 ) : 375 - 390.
  • 6Ong C A, Chambers J A. An enhanced NAS-RIF algo- rithm for blind image deconvolution [ J ]. IEEE Trans Im- age Processing, 1999,8 (7) :988 - 992.
  • 7王卫江,沈庭芝.改进的基于支持域估计和噪声去除的NAS-RIF算法[J].仪器仪表学报,2009,30(6):222-226.
  • 8Rafael C G, Richard E W. Digital image processing[ M ]. Prentice Hall ,2007.
  • 9Donoho D L compressed sensing[ J ]. IEEE Transactions on Information Theory, 2006,52 ( 4 ) : 1289-1306.
  • 10Bioucas-Dias J M,Figueiredo M A T. A new TWIST:Two- step iterative shrinkage/threshold algorithms for image resto- ration [ J ]. IEEE Transactions on Image Processing,2007,16 ( 12 ) :2992-3001.

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部