期刊文献+

利用最小Tsallis交叉熵的视频对象分割算法 被引量:3

Video object segmentation algorithm based on minimum Tsallis cross-entropy
下载PDF
导出
摘要 提出了一种基于改进的最小Tsallis交叉熵的视频对象分割算法。在时域中采用帧间变化检测快速区分前景与背景,在空域中使用改进的最小Tsallis交叉熵设置自适应阈值,能更准确地对差分图像进行阈值分割,克服了传统的最小Tsallis交叉熵法阈值化容易失效的问题,然后利用形态学修正和差分交集技术获得精确的视频对象。实验结果表明,该方法能够准确地识别运动目标,对于分辨率为240×352像素,每像素8位量化的单运动目标序列图像,处理目标分割耗时0.475s;对于分辨率为480×640像素,每像素8位量化的多运动目标序列图像,处理目标分割耗时0.518 s,能够实现对运动目标的实时分析,具有较好的实时性、自适应性、鲁棒性。 An automatic segmentation method was presented for moving objects in video sequence based on improved minimum Tsallis cross-entropy.In the temporal domain,the foreground and the background were distinguished quickly by using frame difference detection,while in the spatial domain,the adaptive threshold was set up by use of the method of improved minimum Tsallis cross-entropy,which segmented the threshold of frame difference image more accurately,and overcame invalidation problem of threshold of conventional minimum Tsallis cross-entropy method.Then the morphologic modification and the difference intersection method were used to obtain accurate video objects.The experimental results indicate that the method can successfully detect moving objects.For the resolution of 240×352 pixels and 8-bit per pixel to quantify the image sequences of single-moving target,time-used to deal with object segmentation is 0.475 s;for the resolution of 480×640 pixels and 8-bit per pixel to quantify the image sequences of multi-moving target,time-used to deal with object segmentation is 0.518 s.It can meet the demand in real-time detecting and is efficient,real time,adaptive and robust.
出处 《红外与激光工程》 EI CSCD 北大核心 2011年第3期559-563,共5页 Infrared and Laser Engineering
基金 河北省教育厅自然科学发展计划项目(2006455)
关键词 MPEG-4 视频对象分割 差分图像 Tsallis交叉熵 数学形态学 MPEG-4 video object segmentation difference image Tsallis cross-entropy mathematic morphologic
  • 相关文献

参考文献8

  • 1Oboukhova N A. Automatic segmentation and tracking of objects in video computer system [C]// IEEE Tenth International Symposium on Consumer Electronics, 2006: 1-4.
  • 2石文君,石尚庆,王登位,徐海全.利用自适应模糊推理PMHT算法的红外小目标跟踪与检测[J].红外与激光工程,2009,38(3):536-541. 被引量:3
  • 3Porikli Fatih. Automatic video object segmentation using volume growing and hierarchical clustering [J]. Journal on Applied Signal Processing, 2004(6):814-832.
  • 4Bailo G, Bariani M, Ijas P, et al. Background estimation with Gaussian distribution for image segmentation a fast approach [C]//Proceedings of the 2005 IEEE International Workshop on Measurement Systems for Homeland Security, Contraband Detection and Personal Safety Workshop, 2005: 2-5.
  • 5Chien Shaoyi, Huang Yuwen. Predictive watershed: a fast watershed algorithm for video segmentation [J]. lEE Trans Circuits Syst Video Technol, 2003, 13(5): 453-461.
  • 6Poftes de Albuquerque M, Esquef I A, Gesualdi Mello A R, et al. Image thresholding using Tsallis entropy [J]. Pattern Recognition Letters, 2004, 25(9):1059-1065.
  • 7Fufuichi S. Fundamental properties on Tsallis entropy [J]. Journal of Physics: Condensed, 2005, 4: 1-12.
  • 8唐英干,邸秋艳,关新平,刘福才.基于最小Tsallis交叉熵的阈值图像分割方法[J].仪器仪表学报,2008,29(9):1868-1872. 被引量:23

二级参考文献24

  • 1安宁,林树忠,刘海华,崔慧.图像处理方法研究及其应用[J].仪器仪表学报,2006,27(z1):792-793. 被引量:34
  • 2郝晓冉,张有志.一种序列图像中运动点目标的检测方法[J].红外与激光工程,2005,34(6):709-713. 被引量:8
  • 3张全都,刘慧霞,潘广林,梁彦,潘泉,程咏梅.天波超视距雷达的PMHT跟踪算法仿真研究[J].中国电子科学研究院学报,2006,1(2):123-129. 被引量:4
  • 4YING M S.Perturbation of fuzzy reasoning[J].IEEE Transactionon Systems,1999,1(15):625-629.
  • 5PALMER P,DABIS H,KITTLER J.A performance measure for boundary detection algorithms[J].Comp Vis and Image Understanding,1996,63(3):476-494.
  • 6ZHAO N X,LIU W T,ZHU Z Y.Study on algorithms of digital image processing based on water-sky-line examination[J].Journal of East China Shipbuilding Institute (Natural Science Edition),2005,19(1):54-58.
  • 7CHUTATAPE O,GUO L.A modified hough transform for line detection and its performance[J].Pattern Recognition,1999,32(4):181-192.
  • 8BRAGA-NETO U,CHOUDHARY M,GOUTSIAS J.Automatic target detection and tracking in forward-looking infrared image sequences using morphological connected operators[J].Journal of Electronic Imaging,2004,13(4):802-813.
  • 9STRANDLIE A,ZERUBIA J.Particleticle traking with iterated Kalman filters and smoothers:the PMHT algorithm[J].Computer Physics Communications,1999,13(3):77-86.
  • 10WILLETT P,RUAN Y,STREIT R.The PMHT:problems and some solutions[J].IEEE Transaction on Aerospace and Electronic Systems,2002,38(3):738-754.

共引文献24

同被引文献33

  • 1王歆玥,高旭辉.一种自适应阈值分割方法[J].红外与激光工程,2006,35(z4):167-171. 被引量:12
  • 2Sahoo P K, Soltani S, Wong A K C. A survey of thresholding techniques [J]. Computer Vision, Graphics and Image Processing, 1988, 41(2): 233-260.
  • 3Otsu N. A threshold selection method from gray-level histogram [J]. IEEE Transactions on System Man and Cybernetics, 1978, SMC-8: 62-66.
  • 4Hou Z, Hu Q, Nowinski W L. On minimum variance thresholding [J]. Pattern Recognition Letters, 2006, 27(14): 1732 - 1743.
  • 5Kittler J, Illingworth J. Minimum error thresholding [J]. Pattern Recognition, 1986, 19(1): 41-47.
  • 6Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram [J]. Computer Vision Graphics and Image Processing, 1985, 29(3): 273-285.
  • 7Li C H, Lee C K. Minimum cross entropy thresholding [J]. Pattern Recognition, 1993, 26(4): 617-625.
  • 8Li Zuoyong, Liu Chuancai, Liu Guanghai, et al. Statistical thresholding method for infrared images[J]. Pattern Analysis and Applications, 2011, 14: 109-126.
  • 9Hu Q, Hou Z, Nowinski W L. Supervised range-constrained thresholding [J]. IEEE Transactions on Image Processing, 2006, 15(1): 228-240.
  • 10Brox T, Malik J. Object segmentation by long term analysis of point trajectories. Computer Vision-ECCV 2010. Springer Berlin Heidel- berg, 2010:282-295.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部