摘要
管理者通常需要确定系统参数及决策变量,以达成预期目标。但优化参数较多时,往往导致求解精度较低,甚至无法求解。为提高优化效果,在定义影响度的基础上提出了影响优化分析方法。依据影响度结果,从众多系统参数中选取那些对系统目标影响较大的参数。将原优化问题转化为非线性规划问题,引入遗传算法优化控制序列和所选参数。以库存系统为例进行数值仿真计算,得到了不同预期、需求条件下的订单处理时间和订货规律。该方法有效减少了优化变量个数,可更准确地为管理者制定运作计划提供依据。
Managers often need to determine the system parameters and decision variables to achieve their desired goals.However,excessive parameters may reduce the accuracy and lead to no solutions.An influence-optimization analysis was developed based on the influence degree to identify parameters that have significant impact on the system goals.The original optimization problem is then converted into a nonlinear programming problem,with the control sequences and selected parameters obtained using a genetic algorithm.Simulations of an inventory system accurately predict order-processing time and ordering rules for different expectations and demand conditions.The number of optimization variables can be reduced using this method to improve the accuracy of operational plans.
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2011年第3期304-308,共5页
Journal of Tsinghua University(Science and Technology)
基金
国家科技支撑计划资助项目(2009BAH48B03)
关键词
运作计划
影响度
动态系统
影响优化分析
遗传算法
系统动力学
operational plan
influence degree
dynamic system
influence-optimization analysis
genetic algorithms
system dynamics