期刊文献+

动态系统影响优化分析 被引量:1

Influence-optimization analysis for dynamic systems
原文传递
导出
摘要 管理者通常需要确定系统参数及决策变量,以达成预期目标。但优化参数较多时,往往导致求解精度较低,甚至无法求解。为提高优化效果,在定义影响度的基础上提出了影响优化分析方法。依据影响度结果,从众多系统参数中选取那些对系统目标影响较大的参数。将原优化问题转化为非线性规划问题,引入遗传算法优化控制序列和所选参数。以库存系统为例进行数值仿真计算,得到了不同预期、需求条件下的订单处理时间和订货规律。该方法有效减少了优化变量个数,可更准确地为管理者制定运作计划提供依据。 Managers often need to determine the system parameters and decision variables to achieve their desired goals.However,excessive parameters may reduce the accuracy and lead to no solutions.An influence-optimization analysis was developed based on the influence degree to identify parameters that have significant impact on the system goals.The original optimization problem is then converted into a nonlinear programming problem,with the control sequences and selected parameters obtained using a genetic algorithm.Simulations of an inventory system accurately predict order-processing time and ordering rules for different expectations and demand conditions.The number of optimization variables can be reduced using this method to improve the accuracy of operational plans.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期304-308,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家科技支撑计划资助项目(2009BAH48B03)
关键词 运作计划 影响度 动态系统 影响优化分析 遗传算法 系统动力学 operational plan influence degree dynamic system influence-optimization analysis genetic algorithms system dynamics
  • 相关文献

参考文献12

  • 1Hiskens I A, Pai M A. Trajectory sensitivity analysis of hybrid systems [J]. IEEE Transactions on Circuits and Systems, 2000, 47(2) : 204 220.
  • 2Btskens C, Maurer H. SQP-methods or solving optimal control problems with control and state constraints, Adjoint variables, sensitivity analysis and real-time control [J]. Journal of Computational and Applied Mathematics, 2000, 1211(1 -2), 85108.
  • 3Rihan F A. Sensitivity analysis for dynamic systems with time-lags [J]. Journal of Computational and Applied Mathematics, 2003, 151(2), 445 462.
  • 4Arutyunov A V, lzmailov A F. Abnormal equality-constrained optimization problems: Sensitivity theory [J]. Mathematical Programming, 2004, 100(3): 485515.
  • 5Marinkovi B. Sensitivity analysis for discrete optimal control problems [J]. Mathematical Methods of Operations Research, 2006, 63(3) : 513 524.
  • 6Miehaleris P, Tortorelli D A, Vidal C A. Tangent operators and design sens[J]. International Journal for Numerical Methods in Engineering, 1994, 37(14) : 2471 -2499.
  • 7Holtz D, Arora J S. An efficient implementation of adjoint sensitivity analysis for optimal control problems[J]. Structural Optimization, 1997, 13(4) : 223 2,29.
  • 8Sandu A, Daescu D N, Carmichael G R, et al. Adjoint sensitivity analysis of regional air quality models [J]. Journal of Computational Physics, 2005, 204(1) : 222 252.
  • 9Haug E J, Wehage R A, Barman N C. Design sensitivity analysis of planar mechanism and machine dynamics [J]. Journal of Mechanical Design, 1981, 103(3) : 560 570.
  • 10Klepfish B R. Sensitivity analysis of mechanical systems with unilateral constraints [J]. Journal of Applied Mathematics and Mechanics, 2003, 67(5) : 631 637.

二级参考文献13

  • 1刘有飞,倪以信.线性供应函数重复竞标时发电商学习对市场均衡的影响[J].电力系统自动化,2004,28(17):16-21. 被引量:11
  • 2SONG H, LIU C C, LAWARREE Jet al. Optimal Electricity Supply Bidding by Markov Decision Process. IEEE Trans on Power Systems. 2000, 15(5): 618-624.
  • 3WEN F, DAVID A K. Optimal Bidding Strategies and Modeling of Imperfect Information Among Competitive Generators. IEEE Trans on Power Systems, 2001, 16(2) : 15-21.
  • 4GUAN X, HO Y C, LAI F. An Ordinal Optimization Based Bidding Strategy for Electric Power Suppliers in the Daily Energy Market. IEEE Trans on Power Systems, 2001, 16(11) :788-797.
  • 5NI E, LUH P B, ROURKE S. Optimal Integrated Generation Bidding and Scheduling with Risk Management Under a Deregulated Power Market. IEEE Trans on Power Systems,2004, 19(11): 600-609.
  • 6SONG H, LIU C C, LAWARREE J. Nash Equilibrium Bidding Strategies in a Bilateral Electricity Market. IEEE Trans on Power Systems, 2002, 17(2) : 73-79.
  • 7PARK J B, KIM B H, KIM J H et al. A Continuous Strategy Game for Power Transactions Analysis in Competitive Electricity Markets. IEEE Trans on Power Systems, 2001,16(4) : 847-855.
  • 8BALDICK R, GRANT R, KAHN E. Linear Supply Function Equilibrium: Generalizations, Applications, and Limitations.UCEI Working Paper. http://www. ucei. berkeley. edu/PDF/pwp078.pdf, 2000.
  • 9SHAHIDEHPOUR.M, ALMOUSH M. Restructured Electrical Power Systems: Operation, Trading, and Volatility. New York(NY,USA) : Marcfl Dekker Inc, 2001.
  • 10PERRY M K. Oligopoly and Consistent Conjectural Variations.Bell-Journal of Economics, 1982, 13(1): 197-205.

共引文献5

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部