期刊文献+

基于二维脉动阵列的GMM矢量乘法器设计

Design of a GMM Vector Multiplier Based on Two-dimensional Systolic Array
原文传递
导出
摘要 为满足大型识别系统的实时识别请求,需采用基于硬件的GMM说话人识别系统。针对GMM模型的数据通路中吞吐量和精度的瓶颈:矢量乘法器模块和指数运算模块,进行体系结构层次上的研究。本研究针对已有文献中脉动阵列的缺陷,提出一种二维脉动阵列的结构,通过并行处理及插入流水线等方法得到多种体系结构。在速度,面积,吞吐量之间进行折中,应用于各种场合,具有极强的扩展性。最后的测试和分析结果表明,本设计满足标准要求,具有实际的应用价值。 In order to meet the request of large-scale real-time identification recognition system, the hardware-based GMM speaker recognition system is necessary. Aiming at the bottleneck of the throughput and accuracy in the data path for GMM model, vector multiplier module and index operation module, the research on the level of the architecture is conducted. In view of the drawbacks of systolic array existed in existing documents this study proposes a two-dimensional systolic array of the vector multiplier module to obtain multiple architectures with the methods such as parallel processing and inserting pipeline. Through the compromise among speed, area, and throughput, it can be used in various applications and has good expandability. The final verification and synthesis results show that the design fully meet the requirements in the standards, and has actual application value.
出处 《电子技术(上海)》 2011年第3期18-22,共5页 Electronic Technology
关键词 高斯混合模型 矢量运算乘法器 二维阵列结构 高维计算分解 超大规模集成电路 GMM model vector multiplier two dimensional array dimension reduction VLSI
  • 相关文献

参考文献8

  • 1Brodsky D,Watson B.Model simplification for interactive applications[C]//.Proceedings.IEEE Virtual Reality,18-22 March 2000 : 286.
  • 2Reynelds D A,Rose R C.Robust text-independent speaker identification Using Gaussian mixture speaker models[J]. IEEE Trans on Speech and Audio Processing,1995, 3 (1) : 72-83.
  • 3饶为,王典洪,麦文伟.语音分段在基于GMM-SVM说话人确认中的应用[J].电子技术(上海),2010(3):18-19. 被引量:1
  • 4Shi Minghua, Bermak A.An efficient digital VLSI implementation of Gaussian mixture mode!s-based classifier[J].IEEE Trans on Very Large Scale Integration System,2006, 14 (9) :962-974.
  • 5孙圣明,陆哲明.矢量量化技术及应用[M].北京:科学出版社,2002.
  • 6Wang Renhua,He Linshen,Fujisaki H.A weighted distancemeasure based on the fine structure of features pace: application to speaker recognition[C]//Proc.of International Conference on Acoustics,Speech,and Signal Processing,1990,ICASSP-90, 1990:273-276.
  • 7Savic M,Gupa S K.Variable parameter speaker verification system based on hidden Markov modeling[C]//Proc.ICASSP, 1990 : 281-284.
  • 8Godfrey J,Grafe D,Martin A.Public databases for speaker recognition and verification[C].Proc.ESCA Workshop Automat.Speaker Recognition,Identification,Verification, Apr. 1994: 39-42.

二级参考文献5

  • 1Man-Wai Mak,Roger Hsiao,Brain Mak.A comparison of various adaptation methods for speaker verification with limited enrollment data[].Proc ICASSP‘.2006
  • 2Fauve B,Evans N,Mason J.Improving the performance of text-independent short duration SVM-and GMM-based speaker verification[].ProcOdyssey.2008
  • 3Reynolds D A,Quatieri T F,Dunn R B.Speaker verification using adapted Gaussian mixture models[].Digital Signal Processing.2000
  • 4Joachims T.Making large-Scale SVM Learning Practical[].Advances in Kernel Methods-Support Vector Learning.1999
  • 5CAMPBELL W M,STURIM D E,REYNOLDS D A.Support vector machines using GMM supervectors for speaker verification[].IEEE Signal Processing Letters.2006

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部