摘要
在非对易空间中,用不变本征算符方法(IEO),对非耦合、坐标耦合、动量耦合三种三模谐振子系统能谱进行求解,并将求解结果与一般对易空间的能谱进行比较分析.通过比较发现,当非对易参数为零时,所求能级差还原到了与普通空间相对应的一般量子系统哈密顿量能级差,验证了推导结果的正确性;同时讨论了耦合系数对非对易空间能谱的影响.
In non-commutative spaces the invariant eigen-operator method is used to derive and calculate Hamiltonian spectra for three kinds of three coupled harmonic oscillators:no coupling,coordinate coupling and momentum coupling.According to the comparison with the results in commutative space,it is shown that when the non-commutative parameter is zero the obtained energy levels are equal to the energy levels in commutative space.Finally the effect of the coupling coefficient on Hamiltonian spectrum in non-commutative space is discussed.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2011年第4期30-34,共5页
Acta Physica Sinica
基金
安徽省高校自然科学基金(批准号:KJ2010B204)资助的课题~~
关键词
不变本征算符
非对易空间
三模谐振子能谱
能级差
invariant eigen-operator method
non-commutation spaces
Hamiltonian spectrum for three coupled harmonic oscillators
the energy levels