期刊文献+

甲型流感病毒DNA序列的长记忆ARFIMA模型 被引量:5

Long-memory ARFIMA model for DNA sequences of influenza A virus
原文传递
导出
摘要 流感病毒分为三类:甲型(A型),乙型(B型),丙型(C型).在这三种类型中甲型(A型)流感病毒是最致命的流感病毒,对人类引起了严重疾病.本文对甲型流感病毒DNA序列建立了一种新的时间序列模型,即CGR(Chaos Game Representation)弧度序列.利用CGR坐标将甲流病毒DNA序列转换成CGR弧度序列,且引入长记忆ARFIMA模型去拟合此类序列,发现随机找来的10条H1N1序列,10条H3N2序列都具有长相关性且拟合很好,并且还发现这两种序列可以尝试用不同的ARFIMA模型去识别,其中H1N1可用ARFIMA(0,d,5)模型去识别,H3N2可用ARFIMA(1,d,1)模型去识别. Influenza viruses are divided into three types:A,B and C.Among them,type A virus is the most virulent human pathogen and causes the most severe disease.In this paper,we propose a new time series model for influenza A virus DNA sequence,i.e.chaos game representation(CGR) radians series.The CGR coordinates are converted into a time series model,and a long-memory ARFIMA(p,d,q) model is introduced to simulate the time series model.We select randomly 10 H1N1 sequences and 10 H3N2 sequences in analysis.we find in these data a remarkably long-range correlation and fit the model reasonably by ARFIMA(p,d,q) model,and also find that we can use different ARFIMA models to identify the two kinds of sequences,i.e.ARFIMA(0,d,5) model and ARFIMA(1,d,1) model that can identify H1N1 and H3N2 respectively.
作者 刘娟 高洁
机构地区 江南大学理学院
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第4期783-788,共6页 Acta Physica Sinica
基金 江南大学创新团队发展计划(批准号:2008CX002) 中央高校基本科研业务经费专项资金(批准号:JUSRP21117)资助的课题~~
关键词 甲型流感 时间序列模型 CGR ARFIMA(p d q)模型 influenza A virus time series model chaos game representation(CGR) ARFIMA(p d q) model
  • 相关文献

参考文献21

  • 1Morens D, Folkers G, Fauci A 2004 Nature 430 242.
  • 2Chen J M, Sun Y X, Liu S 2009 Chinese Science Bulletin 54 1657 (in Chinese).
  • 3Webster R G, Bean W J, Gorman O T 1992 Microbiol Rev. 56 152.
  • 4Shi X M, Shi L, Zhang J F 2010 Chin. Phys. B 19 038701.
  • 5Peng C K, Buldyrev S, Goldberg A L, Havlin S, Sciortino F, Simons M, Stanley H E 1992 Nature 356 168.
  • 6Voss R F 1992 Phys. Rev. Lett. 68 3805.
  • 7Buldyrev S V, Goldberger A L, Havlin S, Peng C K, Simon M, Stanley H E 1993 Phys. Rev. E 47 4514.
  • 8Buldyrev S V, Goldberger A L, Havlin S, Mantegna R N, Matsa ME, Peng C K, Simon M, Stanley H E 1995 Phys. Rev. E 51 5084.
  • 9Tai Y Y, Li P C, Tseng H C 2006 Physica A 369 688.
  • 10Luo L F, Lee W J, Jia L J, Ji F M, Tsai L 1998 Phys. Rev. E 58 861.

同被引文献26

  • 1强慧勤,李钊,武治云,周文茂,刘洋,张慧.石家庄地区奶牛A型口蹄疫免疫效果调查与分析[J].今日畜牧兽医,2011,27(S1):56-58. 被引量:1
  • 2Chan H S, Dill K A. Compact polymers[ J ]. Macromolecular, 1989,22:4559- 4573.
  • 3Brown T A. Genetics[ M]. 3 rd. London: Chapman and Hall,1998.
  • 4Basu S, Pan A, Dutta C, et al. Chaos game representation of protein structures[ J]. J Mol Graphics Model,1997,15:279-289.
  • 5GAO Jie, XU Zhen-yuan. Chao game representation (CGR) walk model for DNA sequences [ J ]. Chinese Physics B,2009,18 ( 11 ) :370-376.
  • 6YU Zu-guo, Anh V V, Lau K S. Fractal analysis of measure representation of large proteins based on the detailed HP model [J]. Physiea A,2004,337:171-184.
  • 7YU Z G, Anh V, Lau K S. Chaos game representation of protein sequences based on the detailed HP model and their muhifractal and correlation analyses [ J ]. Journal of Theoretical Biology ,2004,226 : 341-348.
  • 8Akaike H. A new look at statistical model identification[ J]. IEEE Transaction on Automatics Control, 1974,19:9-14.
  • 9Ljung G M, Box GEP. On a measure of lack of fit in time series models[J]. Biomertrica, 1978,30A:9-14.
  • 10Zu-Guo Yu,Vo Anh,Ka-Sing Lau.Fractal analysis of measure representation of large proteins based on the detailed HP model[J]. Physica A: Statistical Mechanics and its Applications . 2004 (1)

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部