期刊文献+

钢纤维砂浆抗裂性能的定量评价与机理 被引量:6

Quantitative Evaluation and Mechanism of Crack Resistance of Steel Fiber Reinforced Mortar
原文传递
导出
摘要 基于图像分析技术,定量评价了钢纤维掺量、直径及形状对砂浆塑性开裂性能的影响规律。测试了相应条件下砂浆开裂时的塑性抗拉强度及随时间变化的水分蒸发速率,探讨了钢纤维的阻裂机理。结果表明:钢纤维掺量增加、直径减小,裂缝潜在参数Pcrack和尺度参数β降低,裂缝平均宽度降低,抗塑性开裂性能变好;波浪型钢纤维的抗塑性开裂性能优于平直型钢纤维;钢纤维对砂浆抗裂性能的改善主要归功于抗拉强度的提高,而与水分蒸发速率基本无关。 Based on image analysis technique,effect of content,diameter and geometry of steel fiber on plastic shrinkage cracking of mortar was quantitatively evaluated.Plastic tensile strength of mortar at the cracking time and water evaporation rate changing along with time were tested,mechanism of crack resistance of steel fiber was discussed.Results show that,with the increase of steel fiber content,the decrease of steel fiber diameter,crack potential parameter Pcrack and dimension parameter β decrease,average crack width decreases,which imply the plastic crack resistance of steel fiber improves.Plastic crack resistance of steel fiber with shape of wave is better than that with shape of flat.The improvement of crack resistance of steel fiber to mortar mainly attaches to the improvement of tensile strength,while it is essentially independent of the water evaporation rate.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2011年第3期531-536,共6页 Journal of The Chinese Ceramic Society
基金 国家“973”计划(2009CB623200) 国家自然科学基金(5090-8104)资助项目
关键词 钢纤维 抗裂性能 图像分析 砂浆 steel fiber crack resistance image analysis mortar
  • 相关文献

参考文献14

  • 1SARIGAPHUTI M,SHAH S P,VINSON K D.Shrinkage cracking and durability characteritics of cellulose fiber reinforced concrete[J].ACI Mater J,1993,90(4):309-318.
  • 2覃维祖.混凝土性能对结构耐久性与安全性的影响[J].混凝土,2002(6):3-5. 被引量:27
  • 3KONIN A,FRANCOIS R,ARLIGUIE G.Penetration of chlorides in relation to the micro-cracking state into reinforced ordinary and high strength concrete[J].Mater Struct,1998,31(5):310-316.
  • 4BOULFIZA M,SAKAI K,BANTHIA N,et al.Prediction of chloride ions ingress in uncracked and cracked concrete[J].ACI Mater J,2003,100(1):38-48.
  • 5HEAM N.Effect of shrinkage and load-induced cracking on water permeability of concrete[J].ACI Mater J,1999,96(2):234-241.
  • 6SONG H W,KWON S J,BYUN K J,et al.Predicting carbonation in early-aged cracked concrete[J].Cem Concr Res,2006,36(5):979-989.
  • 7QI C Q,WEISS W J,WANG H.Quantifying the impact of plastic shrinkage cracking on the corrosion of reinforced concrete to improve service life prediction[C] //Proceedings of the 6th International Symposium on Cement & Concrete and Canmet/ACI International Symposium on Concrete Technology for Sustainable Development,Xian,China,2006:1325-1335.
  • 8MONTES P,BREMNER T W,LISTER D H.Influence of calcium nitrite inhibitor and crack width on corrosion of steel in high performance concrete subjected to a simulated marine environment[J].Cem Concr Compos,2004,26(3):243-253.
  • 9BANTHIA N,GUPTA R.Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete[J].Cem Concr Res,2006,36(7):1263-1267.
  • 10WANG K J,SHAH S P,PHUAKSUK P.Plastic shrinkage cracking in concrete materials-influence of fly ash and fibers[J].ACI Mater J,2001,98(6):458-464.

二级参考文献12

  • 1[1]P. L. Domone. Concrete. Part Three. Construction Materials. E&FN spon, 1994.
  • 2[2]R. W. Burrows. The Visible and Invisible Cracking of Concrete. ACI Monograph No. 11.1998.
  • 3[3]P. K. M ehta. Concrete:Structures, Properties and Materials. FN 1986.
  • 4[4]P. B. Bamforth. Proc. Instn Civ. Engnrs, Part 2, 69, Sept, 777 - 800.
  • 5[5]Gunnar M. Idorn. Concrete Durability & Resource Economy. Concrete International. V. 13, No 7, 1991.
  • 6[6]P. K. Mehta. Concrete Technology at the Crossroads-Problems and Opportunities. Concrete Technology, Past, Present and Future, ACI SP144- 1, 1994.
  • 7[7]A. Sarjs and E. Vesikari. Durability Design of Concrete Structures. Report of RILEM Technical Committee 130- CSL. E&FN SPON.
  • 8[8]P. K. Mehta. Building Durable Structures in 21st Century. Concrete International. March, 2001.
  • 9马一平,谈慕华.聚丙烯纤维水泥基复合材料物理力学性能研究(Ⅰ)——抗塑性干缩开裂性能[J].建筑材料学报,2000,3(1):48-52. 被引量:58
  • 10马一平,谈慕华,朱蓓蓉,涂意美.水泥基体参数对砂浆塑性收缩开裂性能的影响[J].建筑材料学报,2002,5(2):171-175. 被引量:17

共引文献72

同被引文献58

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部