期刊文献+

心肌组织工程支架材料研究进展 被引量:5

RESEARCH PROGRESS OF MYOCARDIAL TISSUE ENGINEERING SCAFFOLD MATERIALS
原文传递
导出
摘要 目的对心肌组织工程支架材料的研究现状与存在问题进行综述,并展望其前景。方法广泛查阅近年来有关心肌组织工程支架材料的文献,并进行综述。结果作为组织工程中的三大要素之一,合适的支架材料对种子细胞的生长和分化具有重要意义;在心肌组织工程领域,生物支架材料和人工合成支架能够通过其内的活性成分仿生细胞外基质(extracellular matrix,ECM)的结构和功能特点;随着去细胞技术的不断更新,自然源性的ECM已经表现出巨大优势。结论采用复合支架原理,利用计算机和纳米高分子技术等高科技,结合传统心肌组织工程支架生物材料,对生物材料进行表面修饰,有望为心肌组织工程提供较理想的支架材料。 Objective To review the current status and problems in the developing scaffolds for the myocardial tissue engineering appl ication. Methods The l iterature concerning the myocardial tissue engineering scaffold in recent years was reviewed extensively and summarized. Results As one of three elements for tissue engineering, a proper scafold is very important for the prol iferation and differentiation of the seeding cells. The naturally derived and synthetic extracellular matrix (ECM) materials aim to closely resemble the in vivo microenvironment by acting as an active component of the developing tissue construct in myocardial tissue engineering. With the advent and continuous refinement of cell removal techniques, a new class of native ECM has emerged with some striking advantages. Conclusion Through using the principle of composite scaffold, computers and other high-technology nano-polymer technology, surface modification of traditional biological materials in myocardial tissue engineering are expected to provide ideal myocardial scaffolds.
作者 方易冰 廖斌
出处 《中国修复重建外科杂志》 CAS CSCD 北大核心 2011年第3期361-364,共4页 Chinese Journal of Reparative and Reconstructive Surgery
关键词 心肌组织工程 生物支架材料 人工合成支架 复合支架 Myocardial tissue engineering Biological scaffold material Synthetic scaffold Composite scaffold
  • 相关文献

参考文献33

  • 1Silverstein ME, Keown K, Owen JA, et al. Collagen fibers as a fleece hemostatic agent. J Trauma, 1980, 20(8): 688-694.
  • 2Kofidis T, Lenz A, Boublik J, et al. Bioartificial grafts for transmural myocardial restoration: a new cardiovascular tissue culture concept. Eur J Cardiothorac Surg, 2003, 24(6): 906-911.
  • 3Li RK, Jia ZQ, Weisel RD, et al. Survival and function of bioengineered cardiac grafts. Circulation, 1999, 100(19 Suppl): II63-II69.
  • 4Eschenhagen T, Fink C, Returners U, et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J, 1997, 11(8): 683-694.
  • 5Rohr S, Toti F, Brisson C, et al. Quantitative image analysis of angiogenesis in rats implanted with a fibrin gel chamber. Nouv Rev Fr Hematol, 1992, 34(4): 287-294.
  • 6Linnes MP, Ratner BD, Giachelli CM. A fibrinogen-based precision microporous scaffold for tissue engineering. Biomaterials, 2007, 28(35): 5298-5306.
  • 7Christman KL, Fok HH, Sievers RE, et al. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng, 2004, 10(3): 403-409.
  • 8Laurent TC, Fraser JR. Hyaluronan. FASEB J, 1992, 6(7): 2397-2404.
  • 9Khademhosseini A, Eng G, Yeh 1, et al. Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed Microdev, 2007, 9(2): 149-157.
  • 10Ramamurthi A, Vesely I. Evaluation of the matrix-synthesis potential of crosslinked hyaluronan gels for tissue engineering of aortic heart valves. Biomaterials, 2005, 26(9): 999-1010.

同被引文献41

  • 1周栋,邹良建,汪钢,金海,杨勇.三种可降解聚合物构建组织工程心脏瓣膜的可行性对照[J].中国组织工程研究与临床康复,2007,11(1):55-57. 被引量:3
  • 2CAMERON A R, FRITH J E, GOMEZ G A, et al. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Racl activity in mesenchymal stem cells . Biomaterials, 2014, 35(6) : 1857-1868.
  • 3LAU T T, WANG D A. Bioresponsive hydrogel scaffolding systems for 3D constructions in tissue engineering and regen- erative medicine [J]. Nanomedicine, 2013, 8(4) : 655-668.
  • 4GUO H D, WANG H J, TAN Y Z, et al. Transplantation of Marrow-Derived cardiac stem cells carried in fibrin improves cardiac function after myocardial infarction [J]. Tissue Eng Part A, 2011, 17(1/2): 45-58.
  • 5DULING R R, DUPAIX R B, KATSUBE N, et al. Mechan- ical characterization of eleetrospun polycaprolactone(PCID : a potential scaffold for tissue engineering [J]. ] Bioraech Eng, 2008, 130(1): 011006.
  • 6POK S, MYERS J D, MADIHALLY S V, et al. A multi layered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering [J]. Acta Bio- mater, 2013, 9(3): 5630-5642.
  • 7SHAH R, READY D, KNOWLES J C, et al. Sequential identification of a degradable phosphate glass scaffold for skel- etal muscle regeneration [J]. J Tissue Eng Regen Med, 2012.
  • 8ALEKSEEVA T, ABOU NEEL E A, KNOWLES J C. De velopment of conical soluble phosphate glass fibers for direc tional tissue growth [J]. J Biomater Appi, 2012, 26(6) : 733- 744.
  • 9LIUJ, XU H H, ZHOU H Z, et al. Human umbilical cord stem cell encapsulation in novel macroporous and injectable fi- brin for muscle tissue engineering [J]. Acta Biomater, 2013, 9(1) 4688-4697.
  • 10GONG X, TANG C Y, ZHANG Y, et al. Fabrication of gra- ded macroporous poly(lactic acid)scaffold by a progressive solvent casting/porogen leaching approach [J]. J Appl Polym Sci, 2012, 125(1): 571-577.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部