摘要
应用遗传算法和梯度法联合训练人工神经网络,使之从有机物的分子量、临界密度、正常沸点和偶极矩预测其熔点。平均误差5.1%,效果优于Joback方程和许氏方程。
The artificial neural network was trained with the combination of genetic algorithm andgradient method and used to predict the melting point based on the molecular weight, critical density,normal boiling point and dipole moment of organic compounds. The trained artificial neural networkcould make predictions of the melting points within an average error of 5.1%.
出处
《高校化学工程学报》
EI
CAS
CSCD
北大核心
1999年第4期299-302,共4页
Journal of Chemical Engineering of Chinese Universities
关键词
人工神经网络
遗传算法
物性
预测
熔点
有机物
artificial neural network
genetic algorithm
prediction of physicochendcal properties
melting point