期刊文献+

基于用户学习的智能动态热舒适控制系统 被引量:11

Intelligent Dynamic Thermal Comfort Control System with Users' Learning
下载PDF
导出
摘要 静态的热环境易造成人体热适应能力降低,对健康不利。动态的热环境与自然环境相似更有利于用户的健康。提出一种基于用户学习的智能动态热舒适控制系统,在该系统中采用PMV(Predicted Mean Vote)作为控制目标,为了满足不同用户的需要提出个人热舒适区模糊学习算法,可根据个人偏好在线修改个人热舒适区;在计算实验的基础上提出动态热舒适控制策略,动态热舒适区包括舒适区和节能区,在动态热舒适控制中舒适区和节能区周期性交替变化。实验结果表明,该方法即满足用户的热舒适性需求,与静态热舒适控制相比节能效果明显,且对用户的健康有利。 Considering the fact that the static thermal environment is unfavorable to the human's health since it can reduce the ability of human's heat adaptation,and the dynamic thermal environment is favorable to the human's health as it is similar to the natural environment.A dynamical thermal comfortable control system for the inhabited environment was proposed based on users' learning.The thermal comfort Predicted Mean Vote(PMV) index was the control aim of the system.The fuzzy learning algorithm of personal thermal comfort zone was proposed,which modified the personal thermal comfort zone on line to meet the needs of different humans.The dynamical thermal comfort control strategy was proposed based on computational experiments.The dynamical thermal comfort zone included comfort zone and energy saving zone,which changed periodically.The experiment results demonstrated that this method could meet the human's thermal comfort need and reduce the energy consumption,and is favorable to the human's health.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2011年第2期128-135,共8页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金面上资助项目(61074070) 山东省自然科学基金资助项目(Y2008G07Z R2009GZ004) 山东省科技攻关项目(2009GG10001029)
关键词 热舒适 模糊 学习 HCMAC神经网络 thermal comfort fuzzy learning HCMAC neural network
  • 相关文献

参考文献12

  • 1Fanger P O. Thermal comfort : analysis and applications in enviromnental engineering[ M ]. New York : McGraw-Hill, 1972.
  • 2Macarthur J W, Grald E W. Optimal comfort control for vari- able-speed heat pumps [ J ]. ASHRAE Trans, 1988,94 ( 2 ) : 1283 - 1297.
  • 3Scheatzle D G. The development of PMV-based control for a residence in a hot and arid climate [ J ]. ASHRAE Trans, 1991,97 (2) :1002 - 1019.
  • 4Emerson D,Gustavo H C O, Roberto Z F, et al. PMV-based predictive algorithms for controlling thermal comfort in building plants[ C]//16^th IEEE International Conference on Control Applications:Part of IEEE Muhi-conference on Systems and Control. Singapore,2007 : 182 - 187.
  • 5A1-Sanea S A ,Zedan M F. Optimized monthly-fixd thermostat- setting scheme for maximum energy-savings and thermal comfort in air-conditioned spaces [ J ]. Applied Energy, 2008,85 (5) :326 - 346.
  • 6Federspiel C C. Predicting the frequency of hot and cold complaints in buildings [ J ]. International Journal of HVAC&R Research,2000,6 (4) :289 - 305.
  • 7Martin R A,Federspiel C C,Auslander D M. Responding to thermal sensation complaints in buildings [ J ]. ASHRAE Trans, 2002,108 ( 1 ) :407 - 412.
  • 8Liang J, Du R. Design of intelligent comfort control system with human learning, and minimum power control strategies [ J ]. Energy Conversion and Management, 2008, 49 : 517 - 528.
  • 9Ari S, Khalifa H E, Dannenhoffer J F, et al. Fuzzy logic and neural network approximation for Indoor comfort and energy optimization[ C]//Proeeedings of Annual Meeting of Fuzzy Information Processing Society of the North American. 2006: 692 - 695.
  • 10Li Hui ,Zhang Qingfan. Reduce air-conditioning system en- ergy using PMV index[ C]. International Conference for Enhanced Building Operations Committee, Shenzhen,2006.

二级参考文献2

共引文献16

同被引文献96

引证文献11

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部