期刊文献+

一种融合分层信息熵的MRF视频运动前景分割算法 被引量:1

A Multi-Layer MRF Model Fusing Entropy Information for Foreground Segmentation in Video Sequences
下载PDF
导出
摘要 针对视频图像中相邻像素的相关性对前景分割的影响问题,提出了一种以熵图像为纽带的分层马尔可夫随机场(MRF)视频运动前景分割算法.通过图像像素层和信息层构建自适应像素模型和动态光滑模型,增强了视频图像中邻域像素的空间一致性和时间连续性.然后在马尔可夫模型的框架下,采用多环置信度传播算法求解最大后验概率估计,提高视频运动前景分割的质量.实验结果表明该方法能够在不同的视频图像序列条件下完成对运动前景的有效分割. To deal with the problem of modeling pixel-pair relationship for foreground segmentation in video sequences,we propose a multi-layer Markov random field(MRF) model fusing entropy information.Pixel model and smooth model are encoded into the Markov random field framework to update the weights of spatio-temporal constraints.The algorithm of loopy belief propagation makes the global energy optimization more effective.Experimental results for different video sequences show our developed method has a better veracity of segmentation results.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2011年第3期313-317,共5页 Transactions of Beijing Institute of Technology
基金 国家重点基础研究发展规划资助项目(613610303)
关键词 前景分割 熵图像 光滑模型 马尔可夫场 foreground segmentation entropy image smooth model Markov random field
  • 相关文献

参考文献6

  • 1Wren C R, Azarbayejani A, Darrel T, et al. Pfinder:real time tracking of the human body [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7) :780 - 785.
  • 2Stauffer C, Grimson W. Learning patterns of activity using real-time tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8) : 747 - 757.
  • 3Elgammal A, Harwood D, Davis L. Non parametric model for background subtraction[C] // Proceedings of 6th European Conference on Computer Uision. Dublin, Ireland: [s. n. ], 2000:751 - 767.
  • 4Yasler Sheikh, Mubarak Shah. Bayesian modeling of dynamic scenes for object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(11) :1778 - 1792.
  • 5Wu Ying, Yu Ting. A field model for human detection and tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(5) :753 - 756.
  • 6Felzenszwalb P, Huttenlocher D. Efficient belief propagation for early vision[J]. International Journal of Computer Vision, 2006,70(1) :41 - 54.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部