期刊文献+

基于FRFT的宽带水下动目标的速度估计 被引量:2

Moving Target Velocity Estimation in Underwater Wideband Using FRFT
下载PDF
导出
摘要 宽带系统中发射信号为线性调频信号时,根据其窄带模糊度函数脊线为直线而运用解藕原理估计目标速度的性能将急剧下降。目标速度引起信号的尺度伸缩,回波信号依然是线性调频信号。由于分数阶傅立叶变换对线性调频信号的聚焦特性和变换的尺度特性,提出了基于分数阶傅立叶变换估计目标的径向运动速度方法,推导了目标运动速度和分数阶傅立叶变换阶数之间的关系并分析了阶数对速度估计的影响。最后进行了数值仿真,结果表明该估计方法可以有效地估计高速目标的速度,并且具有较高的估计精度。 When the transmitted signal is linear frequency modulation(LFM) signal,the performance of velocity estimation based on narrow ambiguity function is degraded in wideband system.Because target velocity will caused scaled version signal,the echo is still a LFM signal.And the LFM energy in Fractional Fourier Transform Domain can be centered.Then the velocity estimation method based on the scale properties of Fractional Fourier Transform was proposed.The relationship between the order of FRFT and target velocity was derived and the effect of the order on estimated velocity was analyzed.At last,the numerical simulation shows that the proposed method can estimate the velocity of high speed target and has higher accuracy.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第4期766-769,共4页 Journal of System Simulation
关键词 分数阶傅立叶变换 线性调频信号 径向速度 宽带动目标 fractional fourier transform linear frequency modulation radial velocity wideband moving target
  • 相关文献

参考文献11

二级参考文献44

  • 1Boashash B. Estimating and interpreting the instantaneous frequency of a signal. Proc IEEE, 1992, 80(4): 519-569.
  • 2Diuric P M. Kay S M. Parameter estimation of china signal. IEEE Trans on ASSP, 1990, 38(12): 2118-2126.
  • 3Barbarossa S, Petrone V. Analysis of polynomial-phase signals by the integrated generalized ambiguity function. IEEE Trans on SP, 1997, 45(2): 316-327.
  • 4Abatzoglou T J. Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE Trans on AES, 1986, 22(6):708-715.
  • 5Peleg S, Porat B. Linear FM signal parameter estimation from discrete-time observations. IEEE Trans on AES, 1991, 27(4):607-615.
  • 6Haimovich A M, Peckham C, Teti J G, et al. SAR imagery of moving targets: Application of time-frequency distributions for estimating motion parameters. In: Proc 1994 SPIE's International Symposium on Aerospace and Sensing, 1994. 2238:238-247.
  • 7Rao P, Taylor F J. Estimation of instantaneous frequency using the discrete wigner distribution. Electronics Letters, 1990,26(4): 246-248.
  • 8Choi H, Williams W J. Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans on SP, 1988, 37(6): 862-871.
  • 9Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Trans On SP, 1995,43(6): 1511-1515.
  • 10Namias V. The fractional Fourier transform and its application in quantum mechanics. J Inst Appl Math, 1980, 25:241-265.

共引文献295

同被引文献16

  • 1赵兴浩,邓兵,陶然.分数阶傅里叶变换数值计算中的量纲归一化[J].北京理工大学学报,2005,25(4):360-364. 被引量:126
  • 2Tao R,Li X M,Wang Y.Time Delay Estimation of Chirp Signals inthe Fractional Fourier Domain[J].IEEE Trans.Signal Processing(S1053-587X),2009,57(7):2852-2855.
  • 3Pei S C,Ding J J.Closed Form Discrete Fractional and Affine FourierTransforms[J].IEEE Trans.on Signal Processing(S1053-587X),2000,48(5):1338-1353.
  • 4Moddemeijer R.On the Determination of the Position of Extrema ofSampled Correlators[J].IEEE Trans on Signal Processing(S1053-587X),1991,39(1):216-219.
  • 5Liang Y C,Leyman A R.Time Delay Estimation Using Higher OrderStatistics[J].Electronics Letters(S0013-5194),1997,33(9):751-753.
  • 6Wong K M,Luo Z Q,Jin Q.Design of Optimum Signals for theSimultaneous Estimation of Time Delay and Doppler Shift[J].IEEETrans.Signal Processing(S1053-587X),1993,41(6):2141-2154.
  • 7Sharif M R,Abeysekera S S.Efficient Wideband Sonar ParameterEstimation Using a Single Slice of Radon-Ambiguity Transform[C]//IEEE ICASSP-05,Philadelphia,PA,USA.USA:IEEE,2005:605-608.
  • 8Sharma K K,Joshi S D.Time Delay Estimation Using Fractional FourierTransform[J].Signal Processing(S0165-1684),2007,87(5):853-865.
  • 9H M Ozaktas,O Arikan,M A Kutay,el al.Digital Computation ofthe Fractional Fourier Transform[J].IEEE Trans.Signal Processing(S1053-587X),1996,44(9):2141-2150.
  • 10G V Trunk, S F George. Detection of targets in non-Gaussian sea clutter [J]. IEEE Trans. On AES, 1970, 6(5): 620-628.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部