期刊文献+

基于粒子迁徙的粒群优化算法及其在岩土工程中的应用 被引量:20

Particle swarm optimization based on particle migration and its application to geotechnical engineering
下载PDF
导出
摘要 受自然界物种迁徙的启发,提出了一种新的改进的粒群优化算法(MPSO)。算法初始化时,将粒子随机地划分为若干个子粒群,每个子粒群按照给定的策略独立演化,在演化中的指定时段进行粒子的随机迁徙和自适应变异,以保持整个种群的多样性,避免早熟收敛。基准测试函数的计算结果表明,MPSO算法的性能优于其他几种改进算法。堆石体幂函数流变模型,参数较多,具有很强的非线性,将MPSO算法应用到堆石体幂函数流变模型的参数反演中。计算结果表明,利用反演的流变模型参数计算的坝体流变变形与实测变形在发展规律和数值上均比较吻合,证明MPSO算法在多参数、强非线性的复杂模型参数反演中的优越性。 Inspired by the migratory behavior in the nature, a novel migrated particle swarm optimization (MPSO) algorithm is proposed. In this new algorithm, the population is randomly partitioned into several sub-swarms, each of which is made to evolve based on particle swarm optimization with time varying inertia weight and acceleration coefficients (LPSO-TVAC). At periodic stage in the evolution, some particles randomly migrate from one complex to another to enhance the diversity of the population and avoid premature convergence. It further improves the ability of exploration and exploitation. Simulations for benchmark test functions illustrate that the proposed algorithm (MPSO) possesses better ability to find the global optima than other variants and is an effective global optimization tool. Then the new algorithm is applied to parameters inversion of rheological model ofrockfill. The results show that MPSO remarkably improves the calculation accuracy and is an effective toot in parameter inversion of complex model.
出处 《岩土力学》 EI CAS CSCD 北大核心 2011年第4期1077-1082,共6页 Rock and Soil Mechanics
基金 国家自然科学基金(No.50779047)
关键词 流变模型 参数反演 粒群优化算法 粒子迁徙 自适应变异 rheological model parameter inversion particle swarm optimization (PSO) algorithm particle migration adaptive mutation
  • 相关文献

参考文献12

  • 1KENNEDY J, EBERttART R C. Particle swarm optimization[C]//Proceedings of IEEE Imernational Conference on Neural Networks. Piscataway, NJ: IEEE Service Center, 1995:1942-1948.
  • 2EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan: [s. n.], 1995: 39-43.
  • 3CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
  • 4TRELEA I C. The particle swarm optimization algorithm Convergence analysis and parameter selection[J] Information Processing Letters, 2003, 85(6): 317- 325.
  • 5李亮,迟世春,林皋.粒子群优化复合形法求解复杂土坡最小安全系数[J].岩土力学,2005,26(9):1393-1398. 被引量:23
  • 6郭健,王元汉,苗雨.基于MPSO的RBF耦合算法的桩基动测参数辨识[J].岩土力学,2008,29(5):1205-1209. 被引量:5
  • 7姜谙男,梁冰.基于粒子群支持向量机的三维含水层渗流参数反馈识别[J].岩土力学,2009,30(5):1527-1531. 被引量:5
  • 8SHI Y, EBERHART R C. A modified particle swarm optimizer[C]//Proceedings of the IEEE Congress onEvolutionary Computation. Anchorage, Alaska: IEEE Press, 1998: 69-73.
  • 9YANG X M, YUAN J S, YUAN J Y, et al. A modified particle swarm optimizer with dynamic adaptation[J] Applied Mathematics and Computation, 2007, 189(2) 1205-1213.
  • 10吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:450

二级参考文献38

共引文献599

同被引文献276

引证文献20

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部