期刊文献+

定量分析临床子宫动态增强磁共振成像数据的新方法 被引量:3

New method for quantitative analysis of clinical uterus dynamic contrast-enhanced MRI data
下载PDF
导出
摘要 研究提出一种新的定量分析临床常规采集的子宫动态增强磁共振成像数据的MRR-FCM方法,方法结合了提出的改进的参考区域模型用于估计组织的T1(0),模糊聚类分析方法和考虑血浆容积分数的参考区域模型。MRR-FCM方法包括5个步骤:1)使用模糊聚类分析方法自动分割子宫的图像区域;2)使用改进的参考区域模型估计基准的T1(0)值;3)把信号强度转化成对比剂浓度;4)使用模糊聚类分析方法自动地把对比剂浓度曲线分成预定数目的类;5)使用考虑血浆容积分数的参考区域模型逐像素估计子宫区域内的药物代谢动力学参数。通过用MRR-FCM方法分析了6位经病理证实的宫颈癌病人的图像数据,以验证该方法在分析临床动态增强磁共振成像数据的有效性和可行性。MRR-FCM方法给出的在体定量功能参数Ktrans和ve,揭示了宫颈癌病灶内部结构的异质性。Ktrans在宫颈癌病灶和正常子宫组织之间有显著性差异(p<0.01)。MRR-FCM方法能够定量分析在典型的临床环境下采集的子宫动态增强磁共振成像数据,并有可能扩展到其他器官的动态增强磁共振成像数据的定量分析之中。 This study proposes a new method called MRR-FCM for quantitative analysis of routinely acquired clinical uterine dynamic contrast-enhanced MRI,which combines our modified reference region model for estimating T1(0) of tissues,fuzzy C-means method and a reference region model including plasma volume fraction.The MRR-FCM method consists of five steps: 1)Automatically segmenting uterine image area using fuzzy C-means method;2)Estimating baseline T1(0) over uterine area using our modified reference region model;3)Converting signal intensities to contrast agent concentration;4)Automatically clustering contrast agent concentration curves into pre-defined number of clusters using fuzzy C-means method;5)Calculating pharmacokinetic parameter over uterine area pixel by pixel using a reference region model including plasma volume fraction.6 patients with pathologically proven cervix cancer were examined using the MRR-FCM method to demonstrate the feasibility and effectiveness of the MRR-FCM method in a typical clinical setting.The MRR-FCM method provides in vivo quantitative functional parameters of Ktrans and ve,which reveal the heterogeneity over lesion area.A significant difference(p0.01) in Ktrans between tumor area and normal tissue was found.The MRR-FCM method permits quantitative analysis of dynamic contrast-enhanced MRI data acquired in a typical clinical setting,which can be translated into analysis of dynamic contrast-enhanced MRI data from other organs.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第3期501-507,共7页 Chinese Journal of Scientific Instrument
基金 973项目(2011CB707701) 北京市共建项目(JD100010609)资助
关键词 子宫动态增强磁共振成像 模糊聚类分析 参考区域模型 MRR-FCM 药物代谢动力学参数 uterine DCE-MRI fuzzy C-means reference region model MRR-FCM pharmacokinetic parameter
  • 相关文献

参考文献34

  • 1JEMAL A, SIEGEL R, WARD E, etal. Cancer statistics, 2006[J]. CA Cancer J Clin, 2006(56) : 106-130.
  • 2CURA M, CURA A, BUGNONE A. Role of magnetic resonance imaging in patient selection for uterine artery embolization [ J ]. Aeta Radiol, 2006 (47) : 1105-1114.
  • 3KOYAMA T, TAMAI K, TOGASHI K. Staging of carcinoma of the uterine cervix and endometrium[J]. Eur Radiol, 2007 ( 17 ) :2009-2019.
  • 4MANFREDI R, MIRK P, MARESCA G, et al. Local-regional staging of endometrial carcinoma: role of MR imaging in surgical planning [ J ]. Radiology, 2004 ( 231 ) : 372-378.
  • 5ZAHRA M A, TAN L T, PRIEST A N, et al. Semiquantitativc and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer [ J ]. Int J Radiat Oncol Biol Phys, 2009 (74) :766-773.
  • 6COOPER R A, CARRINGTON B M, LONCASTER J A, et al. Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix [ J J. Radiother Oncol, 2000 ( 57 ) :53-59.
  • 7YUH W T, MAYR N A, JARJOURA D, et al. Predicting control of primary tumor and survival by DCE MRI during early therapy in cervical cancer[ J]. Invest Radiol, 2009(44) :343-350.
  • 8BURN P R, MCCALL J M, CHINN R J, et al. Uterine fibroleiomyoma: MR imaging appearances before and after embolization of uterine arteries [ J ]. Radiology, 2000 (214) :729-734.
  • 9GABRIEL H, PINTO C M, KUMAR M, et al. MRI detection of uterine necrosis after uterine artery embolization for fibroids[Jl. AJR Am J Roentgenol, 2004(183) :733-736,.
  • 10HAGSPIEL KD, MATSUMOTO A H, BERR S S. Uterine fibroid embolization : assessment of treatment response using perfusion-weighted extraslice spin tagging (EST) magnetic resonance imaging[ J ]. J Magn Reson Imaging, 2001 ( 13 ) :982-986.

二级参考文献35

  • 1张仕刚,谢耀钦,包尚联.计算机辅助立体定向神经外科手术导航系统[J].中国医学影像技术,2004,20(6):949-953. 被引量:12
  • 2QUANHong,LIUYue,BAOShanglian,LIShaowu,XIEYaoqin,MIAOBinghe,WANGHuiliang.Diagnosis of glioma by multivoxel ~1H-MRSI[J].Progress in Natural Science:Materials International,2004,14(9):770-773. 被引量:5
  • 3穆晓兰,王满宁,宋志坚.手术导航中精度问题的探讨[J].中国微创外科杂志,2004,4(5):444-446. 被引量:7
  • 4陈勇,包尚联,黄斐增,袁克虹,肖桂平.HW-Plan放射治疗计划系统的实验验证[J].中国医学物理学杂志,2005,22(6):691-694. 被引量:8
  • 5OPPELT A. Imaging systems for medical diagnostics: fundamentals, technical solutions and applications for systems applying ionizing radiation, nuclear magnetic resonance and ultrasound[M]. John Wiley-VCH & Sons, Chichester, UK, March, 2006: 1-129, 349-420, 771-872.
  • 6FRIPP J, CROZIER S, WARFIELD S K, et al. Automatic segmentation of the knee bones using 3d active shape models. [A]. Proceedings of the 18th IEEE International Conference on Pattern Recognition [C], 2006: 167-170.
  • 7SEIFERT S, WACHTER I, SCHMELALE G, et al. A Knowledge-Based Approach to Soft Tissue Reconstruc- tion of the Cervical Spine [J]. IEEE Transaction on medical imaging, 2009, 28 ( 4 ): 494-507.
  • 8BOUMAN C A, SHAPIRO M. A multiscale random field model for Bayesian image segmentation [J]. IEEE Transactions on Image Processing, 1994, 3( 2 ): 162-177.
  • 9BOWERS M E, TUNG G A, FLEMING B C, et al. Quantification of meniscal volume by segmentation of 3T magnetic resonance images [J]. Journal of Biomechanics, 2007, 40 ( 12 ): 2811-2815.
  • 10RAUSCHER I, STAHL R, CHENG J, et al. Meniscal Measurements of Tlrho and T2 at MR Imaging in Healthy Subjects and Patients with Osteoarthritis [J]. Radiology, 2008, 249 ( 2 ): 591-600.

共引文献8

同被引文献21

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部