期刊文献+

一类对偶积分方程组正则化为第一类含对数核的Fredholm奇异积分方程组解法 被引量:1

A Method of Solving a Kind of Dual Integral Equations by Decoupling Reduced to Regularized Fredholm Singular Integral Equations with Logarithmic Kernel of First Kind
原文传递
导出
摘要 引入辅助未知函数及辅助未知函数的积分关系式,表示原未知函数,将对偶积分方程组退耦.应用Sonine第一有限积分公式,实现化为Abel型积分方程组,应用Abel反演变换并化简,正则化为含对数核的第一类Fredholm奇异积分方程组.由此给出奇异积分方程组的一般性解.进而获得对偶积分方程组的解析解,同时严格地证明了,对偶积分方程组和由它化成的含对数核的奇异积分方程组的等价性,以及对偶积分方程组解的存在性和唯一性. Original unknown functions are expressed by introducing auxiliary unknown functions and integral relations of auxiliary unknown functions.The dual integral equations are decoupled and reduced to Abel integral equations by using Sonine first finite integral formula and the it is further reduced to regularized Fredholm singular integral equations with logarithmic kernels of first kind by Abel anti-transformation.Thus general solutions of singular integral equations are given.And then analytic solutions of dual integral equations are obtained.Simultaneously the equivalence between dual integral equations and corresponding Fredholm singular integral equations with logarithmic kernel of first kind,the existence and uniqueness of solutions are proved exactly.
作者 王文友
出处 《应用数学学报》 CSCD 北大核心 2011年第2期193-209,共17页 Acta Mathematicae Applicatae Sinica
关键词 对偶积分方程组 Sonine第一有限积分式 奇异积分方程组 Abel反演变换 dual integral equations Sonine first finite integral formula singular integral equations Abel anti-transformation
  • 相关文献

参考文献13

  • 1Titchmarsh E C. Introduction to the Theory of Fourier Integral, London: Oxford Univ Press, 1937: 337-350.
  • 2Busbridge I W. Dual Integral Equations. Proc. London Math., Soc., 1938, 44:115-129.
  • 3Copson E T. On Certain Dual Integral Equations. Proc. Glasgow Math. Association, 1961, 5:19-24.
  • 4范天佑.对偶积分方程与对偶积分方程组及其在固体力学与流体力学中的某些应用[J].应用数学学报,:212-230.
  • 5王文友,谢中才,董金林.更一般形式的复杂对偶积分方程组的解法及其解在固体力学中的应用[J].徐州师范大学学报(自然科学版),2000,18(3):6-12. 被引量:4
  • 6戴显熹 等.半导体电磁测量中一个对偶积分方程组的形式解[J].应用科学学报,:32-39.
  • 7Erdelyi A, Sneddon I N. Fractional Integration and Dual Integral Equations. Canad J. Math., 1962, 14:685-693.
  • 8Walton J R. A Distributional Approach to Dual Integral Equations of Titchmarsh Type. SIAM J. Math Anal., 1975, 6(4): 628-643.
  • 9Gradshtegn I S, Ryzhik I M. Tables of Integrals, Series and Products, 2nd Ed. New York: Academic Press, 1980, 748.
  • 10Watson O N, A Treatise of the Theory of Bessel Function. New York: Cambridge University Press, 1944, 373, 417.

二级参考文献5

  • 1王竹溪 郭敦仁.特殊函数概论[M].科学出版社,1979.729.
  • 2TitchmarshEC.IntroductiontotheTheoryofFourierIntegral[M].London:OxfordUnivPress,1937.337.
  • 3BusbridgeIW.DualIntegralEquations[J].ProcLondonMath,Soc,1938,44:115-129.
  • 4MukiR.Asymmetricproblemsofthetheoryofelasticityforsemi-infinitesolidandthickplate[A].SneddonIN,HillR.ProgressinSolidMechanics:VolⅠ[C].1960.401.
  • 5ErdelyiA.高级超越函数:第2卷[M].张致中译.北京:科学出版社,1958.55.

共引文献4

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部