期刊文献+

概率逻辑学基本定理在多值命题逻辑系统中的推广 被引量:11

Generalization of Fundamental Theorem of Probability Logic in Multi-valued Propositional Logic
原文传递
导出
摘要 通过引入概率测度空间,在n值Lukasiewicz命题逻辑系统中提出了满足Kolmogorov公理的命题公式的概率;证明了概率逻辑学基本定理,并将概率逻辑学基本定理推广到了更一般的形式,改进了对推理结论的不可靠度上界的估计;将概率逻辑学的基本方法引入计量逻辑学,建立了更一般的逻辑度量空间;通过概率逻辑学基本定理,证明了逻辑度量空间中概率MP,HS规则,它是真度MP,HS规则的推广. By means of probability measure space,the concept of probability which satisfied Kolmogorov axioms is introduced in n-valued Lukasiewicz logical system.The fundamental theorem of probability logic is proved and generalized in n-valued Lukasiewicz logical system,so the estimate of uncertainty of conclusions in inference is improved.The basic methods of probability logic are introduced into quantitative logic and a more general logic metric space has been obtained;The MP、HS rules of probability are proved by the fundamental theorem of probability logic,and it is the generalization of the MP、HS rules of truth.
作者 惠小静
出处 《应用数学学报》 CSCD 北大核心 2011年第2期217-228,共12页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10771129) 陕西省自然科学基金(2010JQ1005)资助项目
关键词 概率逻辑学基本定理 概率 不可靠度 计量逻辑学 度量空间 fundamental theorem of probability logic probability uncertainty quantitative logic metric space
  • 相关文献

参考文献20

  • 1Adams E W . A Primer of Probability Logic. Stanford: CSLI Pulications, 1998.
  • 2Hailperin T. Sentential Probability Logic. London: Associated University presses, 1996.
  • 3Coletti G, Scozzafava R . Probabilistic Logic in a Coherent Setting . London: Kluwer Academic Publishers, 2002.
  • 4Dubois D, Prade H. Possibility Theory, Probability Theory and Multiple-valued Logics. Annals of Mathematics and Artificial Intelligence, 2001, 32:35-66.
  • 5Baioletti M, Capotopti A, et al. Simplification Rules for the Coherent Probability Assessment Problem. Annals of Mathematics and Artificial Intelligence, 2002, 35:11-28.
  • 6王国俊.计量逻辑学(Ⅰ)[J].工程数学学报,2006,23(2):191-215. 被引量:199
  • 7王国俊.模糊推理的全蕴涵三I算法[J].中国科学(E辑),1999,29(1):43-53. 被引量:350
  • 8WANG G J, FU L. Unified Forms of Triple I Method. Computers & Mathematics with Applications, 2005, 49:923-932.
  • 9宋士吉,吴澄.模糊推理的反向三I算法[J].中国科学(E辑),2002,32(2):230-246. 被引量:95
  • 10Song S J, Feng C B, Lee E S. Triple I Method of Fuzzy Reasoning. Computers & Mathematics with Applications, 2002, 44:1567-1579.

二级参考文献84

共引文献574

同被引文献94

引证文献11

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部