摘要
通过引入概率测度空间,在n值Lukasiewicz命题逻辑系统中提出了满足Kolmogorov公理的命题公式的概率;证明了概率逻辑学基本定理,并将概率逻辑学基本定理推广到了更一般的形式,改进了对推理结论的不可靠度上界的估计;将概率逻辑学的基本方法引入计量逻辑学,建立了更一般的逻辑度量空间;通过概率逻辑学基本定理,证明了逻辑度量空间中概率MP,HS规则,它是真度MP,HS规则的推广.
By means of probability measure space,the concept of probability which satisfied Kolmogorov axioms is introduced in n-valued Lukasiewicz logical system.The fundamental theorem of probability logic is proved and generalized in n-valued Lukasiewicz logical system,so the estimate of uncertainty of conclusions in inference is improved.The basic methods of probability logic are introduced into quantitative logic and a more general logic metric space has been obtained;The MP、HS rules of probability are proved by the fundamental theorem of probability logic,and it is the generalization of the MP、HS rules of truth.
出处
《应用数学学报》
CSCD
北大核心
2011年第2期217-228,共12页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(10771129)
陕西省自然科学基金(2010JQ1005)资助项目
关键词
概率逻辑学基本定理
概率
不可靠度
计量逻辑学
度量空间
fundamental theorem of probability logic
probability
uncertainty
quantitative logic
metric space