期刊文献+

带间断扩散系数热传导方程的高精度数值模拟方法研究 被引量:4

High Accuracy Numerical Method for Heat Conduction Equation With Discontinuous Diffusion Coefficient
原文传递
导出
摘要 针对热传导方程在间断扩散系数处的数值求解困难,作者已经提出了"孪生逼近"自适应方法.本文以一维问题为例,推广热传导方程解的内蕴连续性到高阶,进而研究构造了更高精度,更经济的"孪生逼近"算法,并用数值结果进行了检验. For the numerical difficulties on discontinuous diffusion coefficient of heat conduction equations,the so-called"twin-fitting"adaptive method has been proposed.In this paper,the intrinsic properties of heat conduction equations are extended to high order,and a kind of"twin-fitting"algorithm which is more accurate and more economic is constructed, at last numerical experiments validate the algorithm's advantages.
出处 《应用数学学报》 CSCD 北大核心 2011年第2期229-239,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金重点项目(10931004) 青年科学基金项目(11001024)资助项目
关键词 热传导方程 间断扩散系数 差分离散 heat conduction equation discontinuous diffusion coefficient difference discretization
  • 相关文献

参考文献14

  • 1Kershaw D S. Differencing of the Diffusion Equation in Lagrangian Hydrodynamic Codes. J. Comput. Phys., 1981, 39:375-395.
  • 2Morel J E, Dendy J E, Hall M L, White S W. A Cell-centered Lagrangian-mesh Diffusion Differencing Scheme. J. Comput. Phys., 1992, 103:286-299.
  • 3Shashkov M J. Conservative Finite-difference Methods on General Grids. CRC Press: Boca Raton, FL., 1996.
  • 4Shashkov M J, Steinberg S. Solving Diffusion Equation with Rough Coefficients in Rough Grids. J. Comput. Phys., 1996, 129:383 405.
  • 5Morel J E, Roberts R M, Shashkov M J. A Local Support-operators Diffusion Discretization Scheme for Quadrilateral r-z Meshes. J. Comput. Phys., 1998, 144:17 51.
  • 6Hermeline F. A Finite Volume Method for The Approximation of Diffusion Operators on Distorted Meshes. J. Comput. Phys., 2000, 160:481-499.
  • 7Hermeline F. Approxiamtion of 2-D and 3-D Diffusion Operators with Variable Full Tensor Coefficients on Arbitrary Meshes. Comput. Meth. Appl. Mech. Engrg., 2007, 196:2497 2526.
  • 8Zhukov V T, Feodoritova O B. Difference Schemes for the Heat Condunction Equation Based on Local Least-squares Approximations, Preprint No. 97, IPMathem. Akad. Nauk S. S. S. R., Moscow, 1989.
  • 9Aavatsmark I, Barkve T, Bee Ф, Aannseth T. Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods. SIAM J. Sci. Comput., 1998, 19:1700-1716.
  • 10Aavatsmark I, Barkve T, Boe Ф, Aannseth T. Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part II: Discussion and Numerical Results. SIAM J. Sci. Comput., 1998, 19:1717-1736.

二级参考文献14

  • 1Lipnikov K, Shashkov M, Yotov I. Local Flux Mimetic Finite Difference Methods. Technical Report LA-UR-05-8364, Los Alamos National Laboratory, 2005.
  • 2Li D Y, Chen G N. An Introduction to Difference Methods of Parabolic Equations. Beijing: Science Press, 1995.
  • 3Hermeline F. A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes. J. Comput. Phys., 2000, 160:481-499.
  • 4Hermeline F. Approxiamtion of 2-D and 3-D Diffusion Operators with Variable Full Tensor Coefficients on Arbitrary Meshes. Comput. Meth. Appl. Mech. Engrg., 2007, 196:2497-2526.
  • 5Zhukov V T, Feodoritova O B. Difference Schemes for the Heat Condunction Equation Based on Local Least-squares Approximations. Preprint No. 97, IPMathem. Akad. Nauk S.S.S.R., Moscow, 1989.
  • 6Aavatsmark I, Barkve T, Bee φ, Aannseth T. Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods. SIAM J. Sci. Comput., 1998, 19: 1700-1716.
  • 7Aavatsmark I, Barkve T, Bφe φ, Aannseth T. Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part II: Discussion and Numerical Results. SIAM J. Sci. Comput., 1998, 19:1717-1736.
  • 8Aavatsmark I. An Introduction to Multipoint Flux Approximations for Quadrilateral Grids. Comput. Geosci., 2002, 6:405 432.
  • 9Samarskii A A. The Theory of Difference Schemes. Marcel Dekker. Inc.: New York-Basel, 2001.
  • 10Kershaw D S. Differencing of the Diffusion Equation in Lagrangian Hydrodynamic Codes. J. Comput. Phys., 1981, 39:375-395.

共引文献4

同被引文献46

  • 1王彩华.一维对流扩散方程的一类新型高精度紧致差分格式[J].水动力学研究与进展(A辑),2004,19(5):655-663. 被引量:21
  • 2葛永斌,田振夫,詹咏,吴文权.求解扩散方程的一种高精度隐式差分方法[J].上海理工大学学报,2005,27(2):107-110. 被引量:19
  • 3Mohebbi A, Dehghan M. High order compact solution of the one dimensional heat and advec- tion-diffusion equations JJ. Appl Math Modell, 2010, 34(10) : 3071-3084.
  • 4Evans D J, Abdullah A R. Alternating group explicit methods for the diffusion equations [ J ]. Appl Math Modelling, 1985, 9(3) : 201-205.
  • 5Krylov N V. Nonlinear Elliptic and Parabolic Equations of Second Order[ MJ. Springer, 1987.
  • 6Ladyenskaja A O, Solonnikov V A, Ural' ceva N N. Linear and Quasi-Linear Equations of Parabolic Typel M]. Smith S trans. Translations of Mathematical Monographs, Vol 23, 1958.
  • 7Kershaw D S. Differencing of the Diffusion Equation in Lagrangian Hydrodynamic Codes. J. Comput. Phys., 1981, 39:375-395.
  • 8Morel J E, Dendy J E, Hall M L, White S W. A Cell-centered Lagrangian-mesh Diffusion Differencing Scheme. J. Comput. Phys., 1992, 103:286-299.
  • 9Shashkov M J, Steinberg S. Solving Diffusion Equation with Rough Coefficients in Rough Grids. J. Comput. Phys., 1996, 129:383-405.
  • 10Shashkov M J. Conservative Finite-difference Methods on General Grids. CRC Press, Boca Raton, FL., 1996.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部