期刊文献+

树的变形与代数连通度 被引量:7

Deformation and Algebraic Connectivity of Weighted Trees
原文传递
导出
摘要 本文利用瓶颈矩阵的Perron值和代数连通度的二次型形式,系统地研究了当迁移或改变分支(边、点)和变动一些边的权重时无向赋权树的代数连通度的变化规律,认为代数连通度可用来描述树的边及其权重的某种中心趋势性.引入广义树和广义特征点概念,将Ⅱ型树转换成具有相同代数连通度的Ⅰ型树,使得树的代数连通度的讨论只须限于Ⅰ型树的研究即可. In this paper,utilizing Perron value of bottleneck matrix for a branch based at a vertex and quadratic form of algebraic connectivity,change rules of algebraic connectivity on undirected weighted trees are studied roundly under changing or shafting branches(edges, vertices) and changing weights of edges.Algebraic connectivity could be considered as a measure of central tendency of edges and weights about a weighted tree.We introduce generalized tree and generalized characteristic vertex,and transform a TypeⅡtree into a TypeⅠtree with equal algebraic connectivity.Therefore,it only needs to investigate TypeⅠtrees when discuss algebraic connectivity of trees.
出处 《应用数学学报》 CSCD 北大核心 2011年第2期341-352,共12页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10531070 10671074) 浙江省教育厅科学基金(Y201017279)资助项目
关键词 LAPLACIAN矩阵 代数连通度 特征点 Fiedler向量 tree Laplacian matrix algebraic connectivity characteristic vertex Fiedler vector
  • 相关文献

参考文献19

  • 1Fiedler M. Algebraic Connectivity of Graphs. J. Czech. Math., 1973, 23:298-305.
  • 2Fiedler M. A Property of Eigenvectors of Nonnegative Symmetric Matrices and its Application toGraph Theory. J. Czech. Math., 1975, 25:619-633.
  • 3Merris R. Characteristic Vertices of Trees. Linear and Multilinear Algebra, 1987, 22:115-131.
  • 4Grone R, Merris R. Algebraic Connectivity of Trees. J. Czech. Math., 1987, 37:660-670.
  • 5Grone R, Merris R. Ordering Trees by Algebraic Connectivity. Graphs and Combinatorics, 1991, 6: 229-237.
  • 6Kirkland S, Neumann M, Shader B. Characteristic Vertices of Weighted Trees via Perron Values. Linear and Multilinear Algebra, 1996, 40:311-325.
  • 7Kirkland S, Neumann M. Algebraic Connectivity of Weighted Trees under Perturbation. Linear and Multilinear Algebra, 1997, 42:187-203.
  • 8Kirkland S, Fallat S. Perron Components and Algebraic Connectivity for Weighted Graphs. Linear and Multilinear Algebra, 1998, 44:131-138.
  • 9Kirkland S, Fallat S. Extremizing Algebraic Connectivity Subject to Graph Theoretic Constraints. Electron. J. Linear Algebra, 1998, 3:8-74.
  • 10Beineke L W, Wilson R J. Topics in Algebraic Graph Theory. London: Cambridge University Press, 2004.

二级参考文献31

  • 1ChungFRK.Eigenvalues of graphs . Proceeding of the International Congress of Mathematicians[M].Zürich,Switzerland,1995.1333-1342.
  • 2EichingerBE.Elasticity theory Ⅰ: Distribution factions for perfect phantom networks [J].Macromolecules,1972,5:496-505.
  • 3[1]Fiedler M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23: 298~305.
  • 4[2]Merris R. Laplacian matrices of graphs: a survey[J]. Linear Algebra A ppl., 1998, 197/198: 143~176.
  • 5[3]Fiedler M. A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory[J]. Czechoslovak Mathematical Journal, 1975, 25: 607~618.
  • 6[4]Grone R, Merris R. Algebraic connectivity of trees[J]. Czechosl ovak Mathematical Journal, 1987, 37: 660~670.
  • 7[5]Merris R. Characteristic vertices of trees[J]. Linear and Multilinear Algebra, 1987, 22: 115~131.
  • 8[6]Kirkland S. A bound on algebraic connectivity of a graph in terms of th e number of cutpoints[J]. Linear and Multilinear Algebra, 2000, 47: 93~103.
  • 9[7]Johnson C R, Horn R A. Matrix analysis[M]. New York: Academic Press, 1985, 179.
  • 10[8]Merris R. Laplacian graph eigenvectors[J]. Linear Algebra Appl.,1998, 278: 221~236.

共引文献17

同被引文献77

引证文献7

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部