期刊文献+

基于神经网络集成技术的运动想像脑电识别方法 被引量:5

An EEG Recognition Algorithm of Motor Imagery Based on Neural Network Ensemble
下载PDF
导出
摘要 针对运动想像脑电信号,提出一种基于神经网络集成技术的识别方法.该方法通过离散小波变换(DWT)抽取想像左、右手运动的主要特征,采用Bagging算法构建神经网络集成(NNE)模型,并选取相对多数投票法获得网络集成的输出结果.在'BCI Competition 2003'竞赛数据集上的实验结果表明,该方法得到了比基于单个神经网络的脑电信号识别方法更高的识别率,同时,降低了个体神经网络的配置难度,提高了系统的泛化能力. Being aiming at motor imagery EEG,a recognition algorithm based on Neural Network Ensemble (NNE) is presented.The main features of left-right hands imagery movement are obtained by using discrete wavelet transform(DWT),then a NNE model is constructed by Bagging algorithm,and the output result of NNE is received through the relative majority vote method.The experiment results of BCI Competition 2003 database show that the recognition rate is better than that of the single neural network.Moreover,the configuration difficulty of single neural network is reduced,and the generalization ability of the system is improved.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2011年第3期347-352,共6页 Journal of Beijing University of Technology
基金 北京市委组织部优秀人才培养资助项目(20071B0501500198) 国家自然基金资助项目(30670543)
关键词 神经网络集成 BAGGING算法 BP神经网络 运动想像 小波变换 neural network ensemble bagging algorithm BP neural network motor imagery wavelet transform
  • 相关文献

参考文献10

  • 1WOLPAW J R, BIRBAUMER N, HEETDERKS W J, et al. Brain-computer interface technology: a review of the first international meeting[ J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8 (2) : 164-173.
  • 2WOLPAW J R, BIRBAUMER N, MAFARLAND D J, et al. Brain-computer interface for communication and control[ J]. Clinical Neurop-hysiology, 2002, 113 (6) : 767-791.
  • 3PINCUS S M. Approximate entropy as a complexity measure [ J]. Chaos, 1995, 5( 1 ) : 110-117.
  • 4ROBERTS S J, PENNY W, REZEK I. Temporal and spatial complexity measures for EEG-based brain-computer interfacing [ J]. Medical and Biological Engineering and Computing, 1998, 37 (1) : 93-99.
  • 5HANSEN L K, SALAMON P. Neural network ensembles [ J~. IEEE Trans Pattern Analysis and Machine Intelligence, 1990, 12(10) : 993-1001.
  • 6钱博,李燕萍,唐振民,徐利敏.基于神经网络集成的说话人识别算法仿真研究[J].系统仿真学报,2008,20(5):1285-1288. 被引量:5
  • 7邓丽,吴春梅,罗芳琼.神经网络集成及研究进展[J].柳州师专学报,2007,22(4):118-122. 被引量:1
  • 8KAMOUSI B, LIU Z, HE B. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis[ J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13 (2) : 166- 171.
  • 9陈梅兰.神经网络集成的设计与应用[J].现代计算机,2008,14(4):28-31. 被引量:2
  • 10SCHLOGL A, LUGGER K, PFURTSCHELLER G, et al. Using adaptive autoregressive parameters for a brain-computer- interface experiment[ C] ///The 19'h Annual International Conference IEEE/EMBS. Chicago: IEEE, 1997, 23(5): 130- 1335. 63-67.

二级参考文献61

共引文献5

同被引文献38

  • 1唐东波.基于神经网络集成的电信客户流失预测建模及应用[J].大众商务,2010(6):152-153. 被引量:5
  • 2刘明宇,王珏,燕楠,魏娜,郑崇勋.一种新的注意力相关脑电分类算法设计[J].西安交通大学学报,2005,39(10):1162-1164. 被引量:3
  • 3于繁华,刘寒冰,谭国金.神经网络集成在结构损伤识别中的应用[J].吉林大学学报(工学版),2007,37(2):438-441. 被引量:2
  • 4Abdulhamit Subasi,Mustafa Yilmaz,Hasan Riza Ozcalik.Classification of EMG Signals Using Wavelet Neural Network. Journal de Neuroradiologie . 2006
  • 5Hansen LK,Salamon P.Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1990
  • 6Pal S K,Mitra S.Multilayer Perceptron, fuzzy sets, and classification. IEEE Transactions on Neural Networks . 1992
  • 7Chan A D C,Englehart K B.Continus myoelectric con-trol for powered prosthesis using hidden markov models. IEEE Transactions on Biomedical Engineering . 2005
  • 8Sun Bao-feng,Chen Wan-zhong.Classification of sEMGsignals using integrated neural network with small sizedtraining data. Biomedical Engineering:Applica-tions,Basis and Communications . 2012
  • 9范金峰.脑电非线性对间序列仿真研究[D]{H}合肥:中国科学技术大学,2007.
  • 10高湘平.基于脑电的意识任务特征提取与识别方法研究[D]{H}合肥:安徽大学,2006.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部