期刊文献+

线性唯象传热定律下热驱动分离过程最优性能

Optimal performance of heat-driven separation process with phenomenological heat transfer law
下载PDF
导出
摘要 考虑传热和传质过程分别服从线性不可逆热力学中的线性唯象传热定律和线性传质定律,研究了热驱动分离过程的最小耗热量和最大生产率。得到了线性唯象传热定律下给定功率输出时的内可逆热机最大效率的解析解,导出了热驱动分离过程的最小耗热量和最大生产率的解析解,并将两种不同传热规律下的优化结果进行了比较,结果表明传热规律影响热驱动分离过程最优性能。本文的研究结果可用于估算热驱动分离过程的能量需求,对实际分离过程最优设计与运行具有一定指导意义。 The minimum heat consumption and maximum productivity of a heat-driven separation process,in which the heat and mass transfer obey the linear phenomenological heat transfer law and linear mass transfer law in linear irreversible thermodynamics,is investigated.An analytical solution for the maximum efficiency of an endoreversible heat engine with the linear phenomenological heat transfer law for a given power output is obtained,and those of the minimum heat consumption and the maximum productivity of the heat-driven separation process are also obtained.The results with different heat transfer laws are compared.The results show that the heat transfer behavior has significant effects on the optimal performance of the heat-driven separation process.The results may be used to estimate the energy demand in a heat-driven separation process,and provide some theoretical guidelines for the optimal design and operation of practical separation processes.
出处 《化工学报》 EI CAS CSCD 北大核心 2011年第4期994-999,共6页 CIESC Journal
关键词 线性唯象传热定律 热驱动分离 最小耗热量 最大生产率 有限时间热力学 linear phenomenological heat transfer law heat-driven separation minimum heat consumption maximum productivity finite time thermodynamics
  • 相关文献

参考文献26

  • 1Andresen B, Berry R S, Ondrechen M J, Salamon P. Thermodynamics for processes in finite time [J]. Acc. Chem. Res. , 1984, 17 (8): 266-271.
  • 2Bejan A. Entropy generation minimization: the thermodynamics of finite size device and finite-time processes [J]. J. Appl.Phys., 1996, 79 (3): 1191-1218.
  • 3Berry R S, Kazakov V A, Sieniutycz S, Szwast Z, Tsirlin A M. Thermodynamic Optimization of Finite Time Processes [M]. Chichester: Wiley, 1999.
  • 4Chen L, Wu C, Sun F. Finite time thermodynamic optimization or entropy generation minimization of energy systems [ J ]. J. Non-Equilib. Thermodyn. , 1999, 24 (4) : 327-359.
  • 5Sieniutycz S. Thermodynamic limits on production consumption of mechanical energy in practical and industry systems[J]. Progress Energy & Combustion Science, 2003, 29 (3): 193-246.
  • 6Chen L, Sun F. Advances in Finite Time Thermodynamics: Analysis and Optimization [M]. New York: Nova Science Publishers, 2004.
  • 7Chen Lingen(陈林根).Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles(不可逆过程和循环的有限时间热力学分析)[M].Beijing:Higher Education Press,2005.
  • 8Brown G R, Snow S, Andresen B, Salamon P. Finite time thermodynamics of a porous plug [J]. Phys. Rev. A, 1986, 34 (4): 4370-4379.
  • 9Orlov V N, Berry R S. Estimation of minimal heat consumption for heat-driven separation processes via methods of finite time thermodynamics [ J ]. J. Phys. Chem. , 1991, 95 (14): 5624-5628.
  • 10Kazakov V A, Berry R S. Estimation of productivity, efficiency, and entropy production for cyclic separation processes with a distributed working fluid [J]. Phys. Rev. E, 1994, 49 (4): 2928-2934.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部