期刊文献+

基于微流体技术的组织液透皮抽取装置 被引量:5

Interstitial fluid transdermal extraction tool based on microfluidics technology
下载PDF
导出
摘要 为了在连续血糖监测中实现微量组织液的透皮抽取和收集,采用微流体技术,利用聚二甲基硅氧烷(Polydimethyl-siloxane,PDMS)设计加工了组织液透皮抽取装置。首先,采用模塑法加工得到组成装置的4层PDMS。接着,采用氧等离子体键合方法键合PDMS获得能够产生真空负压的文氏管,用于注入生理盐水、抽取组织液和收集组织液的腔体,控制流体传输的气动阀以及连接各部分的微管路4部分装置。然后,测量文氏管的输出负压和气动阀的关闭压强。最后,检验了装置抽取和收集组织液的功能实现情况。结果显示,将220 kPa(绝对压强)的氮气通入文氏管的输入端口,在文氏管的喉部端口获得了92 kPa(绝对压强)的真空负压。另外,只需低于65 kPa(相对压强)的压强就可以关闭采用PDMS薄膜加工的常开型气动阀。该装置可在气动阀的控制下,利用文氏管产生的真空负压,自动完成生理盐水的注入、组织液的抽取和收集。 A microfluidic based Interstitial Fluid (ISF) transdermal extraction tool made from polydim ethylsiloxane (PDMS) was designed to the application of continuous glucose monitoring. Four layers of PDMS fabricated by replica molding process were bonded together using oxygen plasma to construct the device, including a Venturi tube for vacuum generation, chambers for the introduction of ISF and normal saline solution, pneumatic valves for fluid control, and interconnected microchannels. Then, the output vacuum of Venturi tube and the close pressure of pneumatic valve were measured. Finally, the ISF extraction and collection function was tested. Results show that the vacuum pressure is used for fluid manipulation and a 92 kPa (absolute pressure) vacuum is achieved, when 220 kPa (absolute pressure) external pressure is applied to the Venturi tube. Moreover, the normally open pneumatic valves can be closed under the operating pressure.less than 65 kPa (relative pressure). Under the control of pneumatic valves, the normal saline injection, ISF extraction and collection function of the tool are implemented by using the vacuum generated from the Venturi tube.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2011年第3期651-656,共6页 Optics and Precision Engineering
基金 国家自然科学基金青年教师基金资助项目(No.30800239) 天津市自然科学基金资助项目(No.07JCYBJC04900) 教育部博士学科点青年教师基金资助项目(No.20070056075)
关键词 微流体技术 PDMS 文氏管 组织液 连续血糖监测 microfluidics technology Polydimethylsiloxane (PDMS) Venturi tube interstitial fluid continuous glucose monitoring
  • 相关文献

参考文献10

  • 1KLONOFF D C. A review of continuous glucose moni- toring technology[J]. Diabetes Technology & Thera- peutics, 2005,7(5) : 770- 775.
  • 2MITRAGOTRI S, COLEMAN M, KOST J, et al.. Analysis of ultrasonically extracted interstitial fluid as a predictor of blood glucose levels [J]. Journal of Applied Physiology, 2000,89(3) :961-966.
  • 3TIESSEN R G, RHEMREV-BOOM M M, KORF J. Glucose gradient differences in subcutaneous tis sue of healthy volunteers assessed with ultraslow microdialysis and a nanolitre glucose sensor [J]. Life Sciences, 2002, 70(21) :2457-2466.
  • 4GARG S K, POTTS R O, ACKERMAN N R, el al.. Correlation of fingerstick blood glucose meas- urements with GlucoWatcb biographer glucose re suits in young subjects with type 1 diabetes [J]. Diabetes Care, 1999,22(10) : 1708-1714.
  • 5GUERCI B, FLORIOT M, BOHME P, et al.. Clini cal performance of CGMS in type 1 diabetic patients treated by continuous subcutaneous insulin infusion u-sing insulin analogs [J]. Diabetes Care, 2003,26 (3) : 582-589.
  • 6BURGE M R, MITCHELL S, SAWYER A, et al.. Continuous glucose monitoring: the future of diabetes management [J]. Diabetes Spectrum, 2008, 21 (2) : 112-119.
  • 7BECK R W, HIRSCH I B, LAFFEL L, et al.. The effect of continuous glucose monitoring in well-controlled type 1 diabetes [J]. Diabetes Care, 2009,32 (8) : 1378-1383.
  • 8TAMBORLANE W V, BECK R W, BODE B W, et al.. Continuous glucose monitoring and intensive treatment of type 1 diabetes [J]. The New England Journal of Medicine, 2008,359(14) 11464-1476.
  • 9MITRAGOTRI S. Synergistic effect of enhancers for transdermal drug delivery[J]. Pharmaceutical Research, 2000,17(11) :1354-1359.
  • 10KOST J, MITRAGOTRI S, GABBAY R A, et al.. Transdermal monitoring of glucose and other analytes using ultrasound [J]. Nature Medicine, 2000,6:347-350.

同被引文献58

  • 1黄显,栗大超,徐可欣,于海霞,黄福祥,胡小唐.基于微型表面等离子共振生物传感器的葡萄糖浓度测量技术[J].传感技术学报,2006,19(05B):2072-2076. 被引量:6
  • 2刘涛,班睿.大肠杆菌GBP的定点突变与制备方法研究[J].化学与生物工程,2007,24(9):50-53. 被引量:1
  • 3Bae Y M, Oh B K, Lee W, et al. Study on orientation of immunoglobulin G on protein G layer [J]. Biosensors and Bioelectronlcs, 2005, 21 ( 1 ) : 103-110.
  • 4Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection [J]. Zeitschrift far Physik A Hadrons and Nuclei, 1968, 216 (4) : 398-410.
  • 5Fischer U Ch, Pohl D W. Observation of single-particle plasmons by near-field optical microscopy[J]. Physical Re- view Letter, 1989, 62(4): 458-461.
  • 6Stenberg E, Persson B, Roos H, et al. Quantitative deter- mination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins [J]. Journal of Colloid and Interface Science, 1991, 143(2) : 513-526.
  • 7Specht M, Pedarnig J D, Heckl W M, et al. Scanning plasmon near-field microscope[J]. Physical Review Letter,1992,68(4): 476-479.
  • 8Melendez J, Carr R, Bartholomew D U, et al. A commer- cial solution for surface plasmon sensing [J]. Sensors and Actuators B: Chemical, 1996, 35 (1/2/3): 212-216.
  • 9Kurihara K, Nakamura K, Suzuki K. Asymmetric SPR sen- sor response curve-fitting equation for the aecurate determi- nation of SPR resonance angle[Jl. Sensor and Actuators B: Chemical, 2002, 86(1): 49-57.
  • 10Lain W W, Chu L H, Wong C L, et al. A surface plasmon resonance system for the measurement of glucose in aque- ous solution [J]. Sensors and Actuators B: Chemical, 2005, 105(2): 138-143.

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部