期刊文献+

标的资产服从分数布朗运动的权证定价及实证分析

Pricing of Warrant When Underlying Asset Price Submitting to Geometric Fractional Brownian Motion and Empirical Analysis
下载PDF
导出
摘要 在标的资产服从几何分数布朗运动模型假设下,通过关于分数布朗运动的随机分析理论,在对市场无任何其它条件假设下,利用无套利理论和自融资策略求出了在标的资产由红利支付时的欧式未定权益的一般定价公式,并由此得到了欧式认购权证和欧式认沽权证的具体定价公式以及其套期保值策略,并联系四川长虹认购权证给出了实证分析. By means of stochastic analysis theory related to Fractional Brownian motion,without any other market assumption,under the hypotheses of underlying asset price submitting to Geometric Fractional Brownian motion,using no-arbitrage theory and self-financing method we obtain the generalized pricing formula of European contingent claim and the prices of European Call and Put Warrant,and we also get the hedging method.Finally,using ChanghongCWB1 we get the empirical analysis.
出处 《泰山学院学报》 2010年第6期24-29,共6页 Journal of Taishan University
关键词 分数布朗运动 欧式未定权益 欧式权证 四川长虹认股权证 Fractional Brownian motion European contingent claim European warrant CWB1
  • 相关文献

参考文献5

  • 1Ducan T E, Hu Y, B Pasik Ducan. Stochastic Calculus for Fractional Brownian Motion [ J ]. SIAMJ Control Optim,2000,38:582 - 612.
  • 2Hu Y, B Qksendal. Fractional White Noise Calculus and Application to Finance [ J ]. Infinite Dimensional Analysis Quantum Probability and Related Topics,2003, (6) : 1 - 32.
  • 3Lin S J. Stochastic Analysis of Fractional Brownian Motion, Fractional Noises and Application[ J]. SIAM Review, 1995, (10) :422 -437.
  • 4约翰 赫尔.期权、期货和衍生证券[M].北京:华夏出版社,1997..
  • 5刘韶跃,杨向群.分数布朗运动环境中欧式未定权益的定价[J].应用概率统计,2004,20(4):429-434. 被引量:50

二级参考文献5

  • 1刘韶跃,杨向群.分数布朗运动环境中标的资产有红利支付的欧式期权定价[J].经济数学,2002(4):35-39. 被引量:32
  • 2Ducan, T.E., Y. Hu and B. Pasik-Ducan, Stochastic calculus for fractinal Brownian motion, I. SIAMJ. Control Optim.,38(2000), 582-612.
  • 3Hu, Y. and B. Oksendal, Fractional white noise calculus and application to finance, Inf. Dim. Anal. Quantum Prob.Rel. Top., 6(2003), 1-32.
  • 4Lin, S.J., Stochastic analysis of fractional Brownian motion, fractional noises and application, SIAM Review,10(1995), 422-437.
  • 5Ciprian Necula, Option Pricing in a Fractional Brownian Motion Enviroment, Preprint, Academy of Economic Studies Bucharest, Romania, www.dofin.ase.ro/.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部