期刊文献+

Progress of marine biofouling and antifouling technologies 被引量:17

Progress of marine biofouling and antifouling technologies
原文传递
导出
摘要 Adhesion of marine fouling organisms on artificial surfaces such as ship hulls causes many problems, including extra energy consumption, high maintenance costs, and increased corrosion. Therefore, marine antifouling is an important issue. In this review, physical and biochemical developments in the field of marine biofouling, which involves biofilm formation and macro-organism settlement, are discussed. The major antifouling technologies based on traditional chemical methods, biological methods, and physical methods are presented. The chemical methods include self-polishing types such as tributyltin (TBT) self-polishing co- polymer coatings, which despite its good performance has been banned since 2008 because of its serious environmental impact. Therefore, other methods have been encouraged. These include coatings with copper compounds and biocide boosters to replace the TBT coatings. Biological extracts of secreted metabolites and enzymes are anticipated to act as antifoulants. Physical methods such as modification of surface topography, hydrophobic properties, and charge potential have also been considered to prevent biofouling. In this review, most of the current antifouling technologies are discussed. It is proposed that the physical antifouling technologies will be the ultimate antifouling solution, because of their broad-spectrum effectiveness and zero toxicity. Adhesion of marine fouling organisms on artificial surfaces such as ship hulls causes many problems, including extra energy consumption, high maintenance costs, and increased corrosion. Therefore, marine antifouling is an important issue. In this review, physical and biochemical developments in the field of marine biofouling, which involves biofilm formation and macro-organism settlement, are discussed. The major antifouling technologies based on traditional chemical methods, biological methods, and physical methods are presented. The chemical methods include self-polishing types such as tributyltin (TBT) self-polishing copolymer coatings, which despite its good performance has been banned since 2008 because of its serious environmental impact. Therefore, other methods have been encouraged. These include coatings with copper compounds and biocide boosters to replace the TBT coatings. Biological extracts of secreted metabolites and enzymes are anticipated to act as antifoulants. Physical methods such as modification of surface topography, hydrophobic properties, and charge potential have also been considered to prevent biofouling. In this review, most of the current antifouling technologies are discussed. It is proposed that the physical antifouling technologies will be the ultimate antifouling solution, because of their broad-spectrum effectiveness and zero toxicity.
机构地区 Tsinghua Univ
出处 《Chinese Science Bulletin》 SCIE EI CAS 2011年第7期598-612,共15页
基金 supported by the National Natural Science Foundation of China (50675112 and 50721004) the National Basic Research Pro-gram of China (2007CB707702)
关键词 海洋生物污染 防污技术 物理方法 丁基锡化合物 化学方法 生物杀灭剂 能源消耗 生物附着 biofouling, antifouling technology, biofilm, adhesion mechanism
  • 相关文献

参考文献2

二级参考文献8

共引文献19

同被引文献137

引证文献17

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部