摘要
A new scheme based on the electrical-filtered optical heterodyne technique is proposed for measuring the tuning speed of tunable distributed Bragg reflector (DBR) lasers. In this scheme, a 10 GHz high-pass electrical filter is used and the wavelength switching time of a tunable DBR laser for different tuning frequencies corresponding exactly to different delay lines is measured. The switching time is measured to be nearly 300 ns and can be improved by reducing the equivalent resistance-capacitance (RC) time constant of the device. The distribution of the beat signal of the DBR laser in the time domain is also obtained, and is a good match with the waveforms measured using an optical filter.
A new scheme based on the electrical-filtered optical heterodyne technique is proposed for measuring the tuning speed of tunable distributed Bragg reflector (DBR) lasers. In this scheme, a 10 GHz high-pass electrical filter is used and the wavelength switching time of a tunable DBR laser for different tuning frequencies corresponding exactly to different delay lines is measured. The switching time is measured to be nearly 300 ns and can be improved by reducing the equivalent resistance-capacitance (RC) time constant of the device. The distribution of the beat signal of the DBR laser in the time domain is also obtained, and is a good match with the waveforms measured using an optical filter.
基金
supported by the National Natural Science Foundation of China (60536010, 60606019, 60777029, and 60820106004)
the National Basic Research Program of China(2006CB604902, 2006CB302806,2006dfa11880, and 2009AA03Z409)
the Meteorology Industry Research Project of China (GYHY200806033)