期刊文献+

低温电解质[K_3AlF_6/Na_3AlF_6]-AlF_3-Al_2O_3熔体中TiB_2-C复合阴极的耐腐蚀性能 被引量:3

Corrosion resistance of TiB_2-C cathode composites for aluminum electrolysis in [K_3AlF_6/Na_3AlF_6]-AlF_3-Al_2O_3 melts
下载PDF
导出
摘要 采用模压-焙烧技术制备沥青、呋喃、酚醛和环氧基TiB2-C复合阴极,研究其在[K3AlF6/Na3AlF6]-AlF3-Al2O3熔体中的低温电解腐蚀行为。研究结果表明:TiB2-C复合阴极均有着良好的铝液润湿性;沥青基TiB2-C复合阴极耐腐蚀性能较差,其腐蚀率和碱金属(K和Na)渗透速率分别为8.09 mm/a和10.6 mm/h;相比之下,酚醛基TiB2-C复合阴极的耐腐蚀性能最好,其腐蚀率和碱金属的渗透速率分别为3.05 mm/a和4.72 mm/h,分别比沥青基TiB2-C复合阴极下降62.3%和55.5%;树脂基TiB2-C复合阴极的抗碱金属渗透能力较好,其中又以酚醛基TiB2-C复合阴极的抗碱金属渗透能力最强;树脂黏结剂的使用可以在一定程度上改善TiB2-C复合阴极的耐腐蚀性能。 Pitch,furan,phenolic aldehyde and Epoxy based TiB2-C cathode composites were prepared in the mould pressing-baking process,and their corrosion resistance in [K3AlF6/Na3AlF6]-AlF3-Al2O3 melts was studied.The results show that no matter what kind of binder is used,TiB2-C cathode composites have the good wetting property by liquid aluminum.Pitch based TiB2-C cathode composite has the poor corrosion resistance,and its corrosion rate and penetration rate of alkali metals(K,Na) is 8.09 mm/a and 10.6 mm/h respectively.In contrast,phenolic aldehyde based TiB2-C cathode composite has the stronger corrosion resistance,and its corrosion rate and penetration rate of alkali metal is 3.05 mm/a and 4.72 mm/h,respectively,which decreases by 62.3% and 55.5%.Compared with pitch,resin based TiB2-C cathode composites have stronger resistance ability to penetration of alkali metals.Among them,phenolic aldehyde based TiB2-C cathode composite exhibits the strongest resistance ability to penetration of alkali metals.The use of resin as adhesive can improve the corrosion resistance of TiB2-C cathode composites to some extent.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期588-594,共7页 Journal of Central South University:Science and Technology
基金 国家重点基础研究发展规划项目(2005CB623703) 国家高技术研究发展计划项目(2008AA030502) 国家科技支撑计划项目(2009BAE85B02))
关键词 铝电解 低温电解 黏结剂 TiB2-C复合阴极 耐腐蚀性能 aluminum electrolysis low temperature electrolysis binder TiB2-C cathode composites corrosion resistance
  • 相关文献

参考文献19

  • 1James W E, Halvor K. Sustainability, climate change, andgreenhouse gas emissions reduction: Responsibility, key challenges, and opportunities for the aluminum industry[J]. JOM, 2008, 60(8): 25-31.
  • 2James W E. The evolution of technology for light metals over the last 50 years: A1, Mg, and Li[J]. JOM, 2007, 59(2): 30-38.
  • 3Kvande H. Inert electrodes in aluminum electrolysis cells[J]. Light Metals, 1999(1): 369-376.
  • 4Welch B J. Aluminum production paths in the new millennium[J]. JOM, 1999, 51(5): 24-28.
  • 5Pawlek R P. Inert anodes: An update[J]. Light Metals, 2002(1): 449-456.
  • 6Kvande H, Haupin W. Inert anodes for A1 smelters: Energy balances and environmental impact[J]. JOM, 2001, 53(5): 29-33.
  • 7Jacobs T B, Brooks R. Electrolytic reduction of aluminum: United States, 5279715[P]. 1994-01-18.
  • 8高炳亮.低温铝电解新研究[D].沈阳:东北大学,2003.
  • 9Morten S, Oye H A. Cathodes in aluminum electrolysis[M]. Diisseldorf: Aluminium-Verlag, 1994: 66-73.
  • 10Mcminn C J. Review of RHM cathode development[J]. Light Metals, 1992(1): 419-425.

共引文献4

同被引文献43

  • 1孟庆勇,阚素荣,卢世刚,丁海洋,张向军.K_3AlF_6-Na_3AlF_6-AlF_3体系组成对α-Al_2O_3溶解度和溶解速度的影响[J].稀有金属,2010,34(6):905-910. 被引量:6
  • 2高炳亮.低温铝电解新研究[D].沈阳:东北大学,2003.
  • 3VERBRUGGE M W, KRAJEWSKI P, SACHDEV A K. Challenges and opportunities relative to increased usage of aluminum within the automotive industry[C]//JOHNSON J A. Light metals 2010. Seattle, USA: TMS, 2010: 3-11.
  • 4JAMES W E, HALVOR K. Sustainability, climate change, and greenhouse gas emissions reduction: Responsibility, key challenges, and opportunities for the aluminum industry[J]. JOM, 2008, 60(8): 25-31.
  • 5ALCOM T R, STEWART D V, TABEREAUX A T. Pilot reduction cell operation using TiBz-G cathodes[C]. BLCKERT C M. Light Metals 1990. Warrendale, USA: TMS, 1990: 413-418.
  • 6LU Xiao-jun, XU Jian, LI Jie, LAI Yan-qing, LIU Ye-xiang. Thermal-treated pitches as binders for TiB2/C composite cathodes[J]. Metallurgical and Materials Transactions A, 2012, 43(1): 219-227.
  • 7HOU Jin-long, LU Xiao-jun, ZHANG Hong-liang, LAI Yan-qing, LI Jie. Furan resin and pitch blends as binders for TiB2-C cathodes[C]// LINDSAY S J. Light Metals 2011. San Diego, USA: TMS, 2011: 1117-1121.
  • 8HEIDARI H, ALAMDARI H, DUBE D, SCHULZ R. Pressureless sintering of TiB2-based composites using Ti and Fe additives for development of wettable cathodes[C]//LINDSAY S J. Light Metals 2011. San Diego, USA: TMS, 2011: 1111-1116.
  • 9CRAIG B. Next generation venial electrode cells[J]. JOM, 2001, 53(5): 39-42.
  • 10JACOBS T B, BROOKS R. Electrolytic reduction of aluminum: United States, 5279715[P]. 1994.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部