期刊文献+

几类笛卡尔积图的关联色数研究

Research on the incidence chromatic numbers of some classes of Cartesian product graphs
下载PDF
导出
摘要 图的关联着色问题是图着色理论的重要组成部分之一,确定图的关联色数是一个具有重要的实际价值和理论意义的课题,关于图的关联着色还没有十分深刻的结果,研究了路与完全二部图的笛卡尔积图的关联着色、圈与完全二部图的笛卡尔积图的关联着色、完全图与完全二部图的笛卡尔积图的关联着色,根据笛卡尔积图的特点,采用穷染的方法确定了其中部分图类的关联色数,从而验证了关联着色猜想在这些笛卡尔积图类中是正确的。 The incidence coloring of graph is an important part of the graph coloring theory and the topic for determining the incidence chromatic number of graphs is of great practical and theoretical significance.However,there is no very profound result about the incidence coloring of graph.In this paper,the incidence coloring of Cartesian product of path and complete bipartite graph,of Cartesian product of cycle and complete bipartite graph,of Cartesian product of complete graph and complete bipartite graph are studied.By the properties of these Cartesian product graphs,the incidence chromatic numbers of some of these Cartesian products are obtained.These results verified the conjecture of the incidence coloring in these Cartesian product graphs.
出处 《山东建筑大学学报》 2010年第6期572-575,共4页 Journal of Shandong Jianzhu University
基金 国家自然科学基金青年基金(10901090) 山东省优秀中青年科学家科研奖励基金(BS2010SW030)
关键词 笛卡尔积 关联着色 关联色数 Cartesian product incidence coloring incidence chromatic number
  • 相关文献

参考文献8

二级参考文献61

  • 1陈东灵,刘西奎,王淑栋.图的关联色数和关联着色猜想[J].经济数学,1998,15(3):47-51. 被引量:29
  • 2张忠辅,王建方,王维凡,王流星.若干平面图的完备色数[J].中国科学(A辑),1993,23(4):363-368. 被引量:16
  • 3李蔚蓝.图论[M].湖南科学技术出版社,1980..
  • 4May R M. Simple mathematical models with very complicated dynamics [J]. Nature, 1976, 261 (5560): 459-467.
  • 5Kocic Y L, Ladas G. Global behavior of nonlinear difference equation of higher order with application [ M ]. Boston : Kluwer Academic Publishers, 1993.
  • 6Erbe L H, Zhang B. Oscillation of discrete analogue of delay equations [J]. Diff Integral Equations, 1989, 2(3 ) : 300 -309.
  • 7Goyri I, Ladas G. Oscillation theory of delay differential equations with applications [ M]. New York: Oxford Science Publications, 1991.
  • 8Agarwal R P, Wong P J Y. Advanced topics in difference equations [ M ]. Dordrecht : Kluwer Academic Publishers, 1997.
  • 9Agarwal R P. Difference equations and inequalities [ M ]. Second Edition, New York: Marcel Dekker, 2000.
  • 10Agarwal R P, Grace S R, Regan D O. Oscillation theory for difference and functional differential equations [ M ]. Dordrecht : Kluwer Academic Publishers, 2000.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部