摘要
本文以完全非线性色散K(k,m+n)方程ut+a(uk)x+b(um(un)xx)x=0为例,说明了一种映射法的应用.在m,n,k,a和b的多种不同取值情况下,获得了K(k,m+n)方程,几种新的紧致子,孤子,孤波斑图解.发现K(k,m+n=1)方程在某些条件下,不管会聚情况,还是发散情况,都存在紧致子。
In this paper,we choose the fully nonlinear dispersive K(k,m+n) equations: ut+u(uk)x+b(um(un)xx)x=0 to illustrate the application of the new mapping method.We derive several new compacton,soliton,solitary pattern and periodic wave solutions of the K(k,m+n) equations for all possible values of k,m,n,a and b,and find that the K(k,m+n=1) equation exhibit compactons not only for focusing branch but also for the defocusing branch in some cases.
出处
《上饶师范学院学报》
2010年第6期40-46,112,共8页
Journal of Shangrao Normal University
基金
江西省自然科学基金资助项目(编号:2009GW0026,2008GS0045)
关键词
映射法
紧致子
孤子
非线性色散方程
Mapping method
compacton
soliton
nonlinear dispersion equation