期刊文献+

完全非线性色散K(k,m+n)方程新的紧致子,孤子和孤波斑图解(英文)

Fully Nonlinear Dispersion K(k,m+n) Equations with New Compactons,Solitons and Solitary Patterns Solutions
下载PDF
导出
摘要 本文以完全非线性色散K(k,m+n)方程ut+a(uk)x+b(um(un)xx)x=0为例,说明了一种映射法的应用.在m,n,k,a和b的多种不同取值情况下,获得了K(k,m+n)方程,几种新的紧致子,孤子,孤波斑图解.发现K(k,m+n=1)方程在某些条件下,不管会聚情况,还是发散情况,都存在紧致子。 In this paper,we choose the fully nonlinear dispersive K(k,m+n) equations: ut+u(uk)x+b(um(un)xx)x=0 to illustrate the application of the new mapping method.We derive several new compacton,soliton,solitary pattern and periodic wave solutions of the K(k,m+n) equations for all possible values of k,m,n,a and b,and find that the K(k,m+n=1) equation exhibit compactons not only for focusing branch but also for the defocusing branch in some cases.
机构地区 上饶师范学院
出处 《上饶师范学院学报》 2010年第6期40-46,112,共8页 Journal of Shangrao Normal University
基金 江西省自然科学基金资助项目(编号:2009GW0026,2008GS0045)
关键词 映射法 紧致子 孤子 非线性色散方程 Mapping method compacton soliton nonlinear dispersion equation
  • 相关文献

参考文献4

二级参考文献34

  • 1P. Rosenau, J.M. Hyman. Compactons: Solitons with finite wavelengths [J] Phys. Rev. Lett,1993,70(5) :564-,567.
  • 2P. Rosenau. Nonlinear dispersion and compact structures[ J]. Phys. Rev. I.ett, 1994,73(13):1737- 1741.
  • 3S.Y. Lou, Q.x. Wu. Painleve integrability of two sets of nonlinear evolution equations with nonlinear dispersions[ J ]. Phys. Lett. A, 1999,262: 34,4-349.
  • 4S.Y. Lou. (2 + 1 ) - dimensional compacton solutions with and without completely elastic interaction properties[J] .J. Phys. A: Math. Gen,2002,35:10619 - 10628.
  • 5P. Rosenau. Compact and noncompact dispersive structures[J]. Phys. lett. A,2000,275(3):193-203.
  • 6P. Rosenau. On nonanalytlc solitary waves formed by a nonlinear dispersion[ J ]. Phys. Lett. A, 1997,230([5 ) : 305 - 318.
  • 7Z.Y. Yah. New compacton - llke and solitary patterns - like solutions to nonlinear wave equations with linear dispersion terms[ J]. Non linear Analysis ,2006,64:901 - 909.
  • 8Y.G. Zhu, Q.S. Chang, S.C. Wu. Exact solitary - wave solutions with compact support for the modified KdV equation[J] Chaos, Solitons and Fractals ,2005,24: 365-369.
  • 9Y.D. Shang. New solitary wave solutions with compact support for the KdV- like K(m,n) equations with fully nonlinear dispersion[J]. Appl. Math. Comput,2006,173: 1124- 1136.
  • 10A.M. Wazwaz, Variants of the generalized KdV equation with compact and noncompact structures[J]. Appl. Math. Comput,2004,47:583-591.

共引文献510

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部