期刊文献+

Banach空间中带有非局部条件发展包含的可控性 被引量:1

Controllability of Evolution Inclusions with the Non-partial Conditions in the Banach Space
下载PDF
导出
摘要 研究了一类带有非局部条件发展包含的可控性问题,利用不动点定理给出了半线性系统可控性的充分条件. In this article,a kind of the controllability question which had the non-partial condition development contains are studied,Using the fixed point theorem,the sufficient condition of the controllability of the semilinear system are given.
作者 张鹿 于金凤
机构地区 哈尔滨师范大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2010年第4期61-65,共5页 Natural Science Journal of Harbin Normal University
关键词 非局部条件 半线性系统 MILD解 可控性 不动点 发展包含 Non-partial condition Semilinear system Mild solution Controllability Fixed point Evolution inclusions
  • 相关文献

参考文献7

  • 1M. Berchohra,S. K. Ntouyas. Controbility of second - order differetial inclusion in Banach spaces with nonlocal conditions. J. Opt. Theory Appl. ,:2000,107:559 -571.
  • 2H. K. Han, J. Y. Park. Boundary controllability for differential equations with nonlocal condition. J. Math. Appl. , 1999,230: 241 - 250.
  • 3Cuocheng Li, Xiaoping Xue. Controllability of evolution inclu- sions with nonlocal conditions. Applied Mathematics and Computation ,2003,141:375 - 384.
  • 4Chang Yongkui, Li Wantong, Juan J. Nieto, Nonlinear Analysis ,2007,67:623 - 632.
  • 5W. E. Fitzgibbon. Semilinear functional differential equations in Banach spaces. J. Differential Equations, 1978,29 : 1 - 14.
  • 6B. C. Dhage,A Boucheif, S. K. Ntouyas. On periodic boundary value problems of first - order perturbed impulsive differential inclusions. Electron. J. Differential Equations,2004,84 : 1 - 9.
  • 7A. Lasota, Z. Opial. An application of the Kakutani - Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. New York, 1983.

同被引文献9

  • 1M. Berchohra, S. K. Ntouyas. Controbility of Second- Order Differetial Inclusion in Banach Spaces with Nonlocal Conditions [J]. J. Opt. Theory Appl,107:559 -571.
  • 2Cuocheng Li, Xiaoping Xue. Controllability of Evolution Inclu- sions with Nonlocal ConditionsEJ]. Ap- plied Mathematics and Computation, 141:375 - 384.
  • 3Yu. Jinfeng. Li, Shiqiang. Controllability of Evolution Inclusion in Banach Space. Proc. Chin. ConMo. Conf. CCC,2011, 603 - 60.
  • 4Hu S, Papageorgiou N S. Handbook of Muhivaluod Analisis. Vol- ume I : Theory. Netherlands: Kluwer Dordrechet, 2000.
  • 5W. E. Fitzgibbon, Semilinear Functional Differential Equations in Banach Spaces[J]. erential Equa - tions 29,1 - 14.
  • 6B. C. Dhage, A Boucheif, S. K. Ntouyas. On Periodic Boundary Value Problems of first - Order Perturbed Impulsive Differential Inclusions, Electron [ J ]. erential Equations,2004,84 : 1 - 9.
  • 7J. R. Kang, Y. C. Kwun and J. Y. Park. Controllability of the Second- Order Differential Inclusion in Banach Spaces [ J ]. Math. Anal. Appl,285 :537 -550.
  • 8于金凤,陈安妮.带有非局部条件二阶微分包含的可控性[J].数学学报(中文版),2010,53(5):871-880. 被引量:3
  • 9于金凤,薛小平.Banach空间发展包含周期解的存在性[J].数学物理学报(A辑),2012,32(1):126-136. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部