期刊文献+

平板微反应器内甲烷-湿空气催化重整的数值分析研究

Numerical Analysis of Methane Catalytic Reforming in a Plate Micro-reactor
下载PDF
导出
摘要 建立了二维稳态多组分传输反应的模型,对平板微反应器中Rh催化剂涂层上甲烷-干、湿空气催化重整制合成气进行了数值计算,并分析了采用湿空气时反应通道长度和高度对重整性能的影响.结果表明:进口速度低于2 m/s时,采用湿空气可提高甲烷转化率和产氢率,反应器出口的温度降低以及减少积碳的发生;采用湿空气时,反应通道长度增大,甲烷的转化率提高,出口氢气含量增大,出口温度相应地降低;反应通道高度增大,甲烷的转化率降低,出口氢气的含量减少,出口温度升高. A two dimensional,steady-state,multi-component transport and reaction model was established for methane catalytic reforming with dry/wet air in a plate micro-reactor.The effect of the channel length and height on the reaction performance was discussed.Calculation results show that methane-wet air catalytic reforming can obtain higher methane conversion ratio and hydrogen output at inlet velocity of lower than 2 m/s,and the lower reactor outlet temperature、reduced carbon deposit in the reactor are also obtained;What is more,with a longer reaction channel a higher methane conversion is reached,higher hydrogen output and lower temperature of reactor outlet are also achieved;with a higher reaction channel,a lower methane conversion and lower hydrogen output and higher temperature of reactor outlet are resulted.
出处 《南华大学学报(自然科学版)》 2010年第4期51-55,共5页 Journal of University of South China:Science and Technology
基金 国家自然科学基金资助项目(51006050)
关键词 平板微通道反应器 催化剂涂层 甲烷催化重整 数值模拟 plate micro-reactor catalytic coating methane catalytic reforming numerical simulation
  • 相关文献

参考文献9

  • 1王锋,辛明道,崔文智,李隆键,陈清华.微型燃料重整制氢技术[J].太阳能学报,2007,28(7):783-792. 被引量:13
  • 2Pfeifer P, Schubert K. Pd Zn catalysts prepared by washcoating microstructured reactors [ J ]. Applied Catalysis A : General,2004 ( 270 ) : 165 - 175.
  • 3Geus J W,Van Giezen J C. Monoliths in catalytic oxidation [ J ]. Catalysis Today, 1999 (47) : 169 - 180.
  • 4Schmidt L D, Deutschmann O, Goralski C T. Modehng the partial oxidation of methane to syn - gas at millisec- ond contact times [ J ]. Natural Gas Conver - sion V, 1998(4) :685 -692.
  • 5Michael J Stutz, Nico Hotz, Dimos Poulikakos. Optimization of methane reforming in a microreactor - effects of catalyst loading and geometry[ J]. Chemical Engineering Science. 2006 (61) :4027 - 4040.
  • 6路勇,沈师孔.甲烷催化部分氧化制合成气研究新进展[J].石油与天然气化工,1997,26(1):6-14. 被引量:36
  • 7Deutschmann O, Schwiedernoch R, Maier L, et al. Natural gas conversion in monolithic catalysts:Interaction of chemical reactions and transport phenomena [ J ]. Natural Gas Conversion VI,2001 (136):215 -258.
  • 8李文兵,齐智平.甲烷制氢技术研究进展[J].天然气工业,2005,25(2):165-168. 被引量:36
  • 9Fu Wei - biao, Hou Ling - yun, Zhong Bei - jing, et al. An analysis of the ignition of premixed gases by a hot spherical surface with catalytic reforming reaction [ J ]. Fuel,2003,82 ( 5 ) :539 - 540.

二级参考文献89

  • 1郑亚锋,赵阳,辛峰.微反应器研究及展望[J].化工进展,2004,23(5):461-467. 被引量:57
  • 2曹立新,陈燕馨,李文钊.Ni系列催化剂上甲烷直接氧化制合成气[J].分子催化,1994,8(5):375-382. 被引量:25
  • 3路勇,邓存,丁雪加,沈师孔.Ni/Al_2O_3催化剂上甲烷部分氧化制合成气[J].催化学报,1996,17(1):28-33. 被引量:30
  • 4路勇,沈师孔.甲烷催化部分氧化制合成气研究新进展[J].石油与天然气化工,1997,26(1):6-14. 被引量:36
  • 5D Z Megede. Fuel processors for fuel cell vehicles. Journal of Power Sources, 2002;106:35.
  • 6J Zhu, D Zhang, K D King. Reforming of CH4 by partial oxidation: thermodynamic and kinetic analyses. Fuel,2001;80:899.
  • 7A T Ashcroft, A K Cheetham, J S Ford etal. Selective oxidation of methane to synthesis gas using transition metal catalysts. Nature, 1990;344(6264): 319.
  • 8A L Larentis, N S de Resende, V M M Salim, J C Pinto. Modeling and optimization of the combined carbondioxide reforming and partial oxidation of natural gas.Applied Catalysis, 2001; 215:211-224.
  • 9R J Berger, G B Marin, J C Schouten. Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Chemical Engineering Science,2001: 56:48-49.
  • 10A Pinto. USP 4750986, 1988.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部