期刊文献+

左右手想象运动的脑电信号分类识别

Classification and Identification of EEG based Imagery Left-right Hands Movement
下载PDF
导出
摘要 利用脑电信号的事件相关同步/去同步(ERS/ERD)现象,针对脑电信号的非平稳随机特性,采用短时傅里叶变换(STFT)提取信号的时频特征,并分别用fisher分类器、人工神经网络(ANN)和支持向量机(SVM)对特征进行模式分类,正确率分别为66.2%(53/80),72.5%(58/80),81.2%(65/80)。实验结果表明STFT能有效提取脑电信号特征,且SVM是一种较优的分类方法。 Use brain-electrical signal's phenomena of event-related desynchmnization/event-related synchronization(ERS/ERD),aim at its non-stationary random feature,adopt short-time Fourier transform to extract its time-frequently feature.After that,classify the feature with fisher,Artificial Neural Network and support vector machine,and respectively,The correct clssfication rates are 59 percent,70 percent,as well as over 80 percent.Experimental result manifest STFT there can be used for extracting characteristic of the brain electrical signal,and SVM is a great method relatively.
出处 《微处理机》 2010年第6期89-92,97,共5页 Microprocessors
基金 重庆市科技攻关计划项目(CSTC 2009AC5023)
关键词 事件相关同步/去同步 短时傅里叶变换 支持向量机 时频分析 ERD/ERS STFT SVM Time-Frequency Analysis
  • 相关文献

参考文献5

  • 1Wolpaw J R, McFarland D J. multichannel EEG-based brain-computer communication [J]. Electroencephalogr Clin Ncurophysiol, 1994,90 (6): 444-449.
  • 2何庆华,彭承琳,吴宝明.脑机接口技术研究方法[J].重庆大学学报(自然科学版),2002,25(12):106-109. 被引量:31
  • 3Jeannered M J. Mental imjagery in the motor context [J]. Neuropsy andChologia, 1995,33 (11) :1411.
  • 4L Cohen. Time-FrequencyAnalysis : Theory and Applica-tions [M]. Upper Saddle River NJ : Prentice Hall, 1995.
  • 5Wolpaw J R, Birbaumer N, McFarland D J. Brain-com-puterInterfaecs for communication and control [J]. Clini-calNeuro-physiology ,2002,11(3):767-791.

二级参考文献16

  • 1WOLPAW J R, BIRBAUMER N, HEETDERKS W J, et al. Brain-computer interface technology: a review of the first international meeting[J]. IEEE Trans Rehab Eng, 2000,8(2):164-173.
  • 2FARWELL L A, DONCHIN E. Talking off the top of your head: A mental prosthesis utilizing event-related brain potentials[J].Electroenceph Clin Neurophysiol, 1988,70(6):510-523.
  • 3DONCHIN E, SPENCER K M, WIJESINGHE R. The mental prosthesis: Assessing the speed of a P300-based brain-computer interface[J]. IEEE Trans Rehab Eng, 2000,8(2):174-179.
  • 4MIDDENDORF M, MC MILLAN G, CALHOUN G, et al. Brain-computer interfaces based on the steady-state visual-evoked response[J]. IEEE Trans Rehab Eng, 2000, 8(2):211-214.
  • 5CHENG MING,GAO SHANGKAI. An EEG-based cursor control system[A]. Proceedings of the first joint BMES/EMBS conference[C]. Atlanta, GA, USA: IEEE BMES&EMBS, 1999. 669.
  • 6PFURTSCHELLER G, FLOTZINGER D, KALCHER J. Brain-computer interface-a new communication device for handicapped persons[J]. Journal of Microcomputer Applications, 1993,16(3):293-299.
  • 7KALCHER J, FLOTZINGER D, NEUPER CH, et al. Graz brain-computer interface II: towards communication between humans and computers based on online classification of three different EEG patterns[J]. Med Biol Eng Comput, 1996, 34(5):382-388.
  • 8PFURTSCHELLER G, NEUPER C, GUGER C, et al. Current trends in Graz brain-computer interface (BCI) research[J]. IEEE Trans Rehab Eng, 2000,8(2):216-219.
  • 9BIRBAUMER N, KüBLER A, GHANAYIM N, et al. The Thought Translation Device (TTD) for completely paralyzed patients[J]. IEEE Trans Rehab Eng, 2000, 8(2):190-193.
  • 10BIRBAUMER N, GHANAYIM N, HINTERBERGER T, et al. A spelling device for the paralysed[J]. Nature, 1999, 398:297-98.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部