期刊文献+

半导体制造中多组合设备的Petri网建模及死锁分析 被引量:2

Petri net modeling and deadlock analysis of multicluster tools in semiconductor manufacturing
下载PDF
导出
摘要 在半导体晶圆加工中必须保证组合设备运行时不存在死锁,为此,建立了多组合设备的模型并研究了无死锁运行问题.首先介绍了多组合设备的结构特征,用面向资源Petri网对它的结构建模;然后,在模型中引入了着色令牌和受控变迁,能很好地描述多组合设备加工晶圆的过程.此模型结构紧凑简洁,能分析加工过程中的稳态、初始暂态和趋停暂态阶段;同时分析了初始暂态阶段如何过渡到稳态阶段.最后,分析了模型的活性等动态行为,提出了避免死锁的控制策略.结果表明如果应用控制策略,多组合设备系统能无死锁运行,有助于对多组合设备进行调度. Deadlock-freedom is essential for the operation of a cluster tool in semiconductor wafer manufacturing.This paper conducts a study of modeling multicluster tools and analysis of avoiding deadlock.After presenting the structural characteristics of multicluster tools,a resource-oriented Petri net(ROPN) model is developed for the architecture of multicluster tools.Then,by introducing colored tokens and controlled transitions into the model,wafer fabrication processes in multicluster tools can be well described.This model is compact and can describe not only the steady state process but also the initial and final transient processes.This model also shows how the production process is transferred from an initial state to the steady state.With this model,dynamical behavior,including liveness,is analyzed.Based on the analysis,a deadlock avoidance policy is proposed.It is shown that the system is deadlock-free if the control policy is applied.Thus,this model is helpful to schedule a multicluster tool system.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第A02期267-271,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60974098) 高等学校博士学科点专项科研基金资助项目(20094420110002) 广东工业大学青年基金资助项目(082816)
关键词 多组合设备 晶圆加工 建模 PETRI网 死锁控制 multicluster tools wafer processing modeling Petri net deadlock control
  • 相关文献

参考文献11

  • 1Jevtic D. Method and apparatus for managing scheduling a multiple cluster tool: European, 1132792 [ P]. 2001.
  • 2Yi J G, Ding S W, Song D Z, et al. Steady-state throughput and scheduling analysis of multi-cluster tools for semiconductor manufacturing : a decomposition approach [ J ]- IEEE Transactions on Automation Science and Engineering, 2008, 5 (2) :321-336.
  • 3Drobouchevitch I, Sethi S P, Sriskandarajah C. Scheduling dual gripper robotic cells : one-unit cycles [J].European Journal of Operational Research, 2006, 171 ( 2 ) : 598 - 631.
  • 4Kim J H, Lee T E. Schedulability analysis of time-constrained cluster tools with bounded time variation by an extended Petri net [ J ]. IEEE Transactions on Automation Science and Engineering,2008, 5 (3) :490-503.
  • 5Zuberek W M. Cluster tools with chamber revisiting-modeling and analysis using timed Petri nets[J].IEEE Transactions on Semiconductor Manufacturing ,2004, 17 ( 3 ) :333 - 344.
  • 6Ding S W, Yi J G, Zhang M T. Multicluster tools scheduling: an integrated event graph and network model approach [ J]. IEEE Transactions on Semiconductor Manufacturing, 2006, 19 ( 3 ) : 339 - 351.
  • 7Wu N Q. Necessary and sufficient conditions for deadlock-free operation in flexible manufacturing systems using a colored Petri net model [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C,1999, 29(2) :192-204.
  • 8Wu N Q. Analysis of wafer sojourn time in dual-arm cluster tools with residency time constraint and activity time variation [J]. IEEE Transactions on Semiconductor Manufacturing,2010, 23( 1 ) :53 -64.
  • 9Wu N Q, Chu C B, Chu F, et al A Petri net method for schedulability and scheduling problems in single-ann cluster tools with wafer residency time constraints [J]. IEEE Transactions on Semiconductor Manufacturing, 2008, 21 (2) :224- 237.
  • 10Wu N Q, Zhou M C. A closed-form solution for schedulability and optimal scheduling of dual-arm cluster tools based on steady schedule analysis [J].IEEE Transactions on Automation Science and Engineering,2010, 7 (2) :303 -315.

同被引文献57

  • 1白丽平,伍乃骐.半导体重入加工过程自动组合装置的建模与分析[J].计算机集成制造系统,2005,11(3):320-325. 被引量:8
  • 2周炳海,潘青枝,王世进.晶圆制造单元的Petri网建模和性能分析[J].计算机工程与应用,2006,42(35):222-225. 被引量:6
  • 3Rostami S, Hamidzadeh B. An optimal residency-aware scheduling technique for cluster tools with buffer module [J]. IEEE Transactions on Semiconductor Manufacturing (S0894-6507), 2004, 17(1): 68-73.
  • 4Brauner N. Identical part production in cyclic robotic cells: concepts, overview and open questions [J]. Discrete Applied Mathematics (S0166-218X), 2008, 156(13): 2480-2492.
  • 5Dawande M, Geismar H N, Pinedo M, et al. Throughput optimization in dual-gripper interval robotic cells [J]. liE Transactions (S0740-817X), 2010, 42(1 ): 1 - 15.
  • 6Dawande M, Geismar H N, Sethi S P, et aI. Throughput optimization in robotic cells [M]. New York, USA: Springer, 2007.
  • 7Geismar H N, Chan L M A, Dawande M, et al. Approximations to optimal k-unit cycles for single-gripper and dual-gripper robotic cells [J].Production and Operations Management ($1937-5956), 2008, 17(5): 551-563.
  • 8Su Q, Cben F. Optimal sequencing of double-gripper gantry robot moves in tightly-coupled serial production systems [J]. IEEE Transactions on Robotics and Automation (S 1042-296X), 1996, 12(1): 22-30.
  • 9Lopez M J, Wood S C: Systems of multiple cluster tools: configuration, reliability, and performance [J]. IEEE Transactions on Semiconductor Manufacturing (S0894- 6507), 2003, 16(2): 170-178.
  • 10Kim J H, Lee T E, Lee H Y, et al. Scheduling analysis of timed-constrained dual-armed cluster tools [J]. IEEE Transactions on Semiconductor Manufacturing (S0894-6507), 2003, 16(3): 521-534.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部