期刊文献+

重模多项式乘法在FPGA上的实现

Implementation of double-module polynomial multiplication on FPGA
下载PDF
导出
摘要 为降低基于重模多项式剩余类环矩阵的密码算法中乘法运算占用的硬件资源量,提出了一种剩余类环上乘法的流水线实现方法.该方法选用数模为216,多项式模为4次首一多项式的重模多项式剩余类环,对流水线设计进行了数学推导,给出了重模多项式剩余类环上可综合乘法模块和不可综合测试模块的Verilog HDL代码,并利用ModelSim软件进行仿真测试.测试结果表明,此方法不仅能够提高乘法运算的速度,而且将16位乘法器的数目从28个降到8个,大大降低了硬件资源消耗量,使得重模多项式剩余类环上矩阵乘法在一般的硬件电路中得以实现,为该类密码算法的推广和应用奠定了基础. To reduce the hardware consumption,a pipe-line method is proposed to implement the multiplication in double-module polynomial residue ring.The method chooses 216 as integer module and any quartic polynomial with the leading coefficient to be one as polynomial module.The pipe-line method is designed according to mathematical derivation.The synthesizable multiplication module and the test module which is unsynthesizable are compiled by Verilog HDL.Finally,the pipe-line method is simulated on ModelSim.The test results show that the new method not only speeds up the multiplication,but also makes the number of 16-bit multiplier decrease from 28 down to 8.Significant reduction of hardware resource consumption ensures that multiplication of double-module polynomial matrix can be realized in a normal circuit.So,it is of great significance to the promotion and application of encryption algorithm based on double-module polynomial residue ring.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第A02期318-322,共5页 Journal of Southeast University:Natural Science Edition
基金 河北省自然科学基金数学研究专项资助项目(08M009)
关键词 重模多项式剩余类环 FPGA 集成电路 double-module polynomial residue class ring field programmable gate array(FPGA) integrated circuit
  • 相关文献

参考文献5

  • 1胡波,赵红芳,羊红光,刘喜波.基于重模多项式矩阵理论的分组密码算法[J].数学的实践与认识,2010,40(2):76-82. 被引量:1
  • 2Gray Jeremy, Parshall Karen Hunger. Episodes in the history of modem algebra( 1800-950 )[M], American Mathematical Society, 2007.
  • 3Ahlquist Gregory C, Nelson Brent, Rice Michael. Optimal finite field multipliers for FPGAs [ J ]. Lecture Notes in Computer Science, 2004, 1673:51-61.
  • 4Paar C. A new architecture for a parallel finite field multiplier with low complexity based on composite fields [J]. IEEE Transactions on Computers, 1996, 45 (7) : 856 - 861.
  • 5Garcia-Martinez Mario Alberto, Posada-Gomez Ruben, Rodriguez-Henl-iquez Francisco. FPGA implementation of an efficient multiplier over finite fields GF(2^m)[ C ]//2005 International Conference on Reconfigurable Computing and FPGAs. Puebla City, Mexico, 2005: 1592508.

二级参考文献5

  • 1Aoki K, Ichikawa T, Kanda M, et al. Specification of Camellia-A 128-bit Block Cipher[M]. Nippon Telegraph and Telegraph Corporation and Mitsubishi Electric Corporation, 2000.
  • 2Lee H, Lee S, Yoon J, et al. The SEED Encryption fllgorithm. RFC 4269, 2005.
  • 3Adams C. RFC 2144: The CAST-128 Encryption Algorithm. RFC Editor, 1997.
  • 4胡波,赵红芳,冯春雨.一种新的重模剩余类环中元素逆的求法[J].河北省科学院学报,2009,26(1):1-3. 被引量:2
  • 5赵红芳,胡波,陈杰,檀蕾.重模多项式的分解及求逆[J].河北省科学院学报,2009,26(1):4-8. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部