期刊文献+

三阶非线性中立型泛函微分方程的振动性 被引量:7

On the Oscillation for Third-order Nonlinear Neutral Functional Differential Equations
下载PDF
导出
摘要 研究了一类三阶非线性中立型泛函微分方程的振动性.利用广义Riccati变换和积分平均技巧,建立了保证此方程一切解振动或者收敛到零的若干新的充分条件. The purpose of this paper is to study the oscillation of third-order nonlinear neutral functional differential equations. By using a generalized Riecati transformation and integral averaging technique,we establish some new sufficient conditions which insure that any solution of this equation oscillates or converges to zero.
作者 俞元洪
出处 《滨州学院学报》 2010年第6期1-6,共6页 Journal of Binzhou University
关键词 三阶中立型方程 振动准则 Kamenev型 Philos型 third-order neutral equation oscillation criterion Kamenev type Philos type
  • 相关文献

参考文献2

二级参考文献26

  • 1Aydin Tiryaki,A. Okay ?elebi.Nonoscillation and asymptotic behaviour for third order nonlinear differential equations[J]. Czechoslovak Mathematical Journal . 1998 (4)
  • 2L. Erbe.Oscillation, nonoscillation, and asymptotic behavior for third order nonlinear differential equations[J]. Annali di Matematica Pura ed Applicata, Series 4 . 1976 (1)
  • 3Erbe L.Existence of oscillatory solutions and asymptotic behaviour for a class of a third order lineardifferential equations. Pacific Journal of Mathematics . 1976
  • 4Hanan M.Oscillation criteria for a third order linear differential equations. Pacific Journal of Mathematics . 1961
  • 5Waltman P.Oscillation criteria for third order nonlinear differential equations. Pacific Journal of Mathematics . 1966
  • 6Erbe L.Oscillation, nonoscillation and asymptotic behaviour for third order nonlinear differential equa-tions. Annali di Matematica Pura ed Applicata . 1976
  • 7Erbe L,Rao V S H.Nonoscillation results for third order nonlinear differential equations. Journal of Mathematical Analysis and Applications . 1987
  • 8Heidel J W.Qualitative behaviour of solutions of a third order nonlinear differential equation. Pacific Journal of Mathematics . 1968
  • 9Lazer A C.The behavior of solutions of the differential equation y’’’+p(x)y’ + q(x)y = 0. Pacific Journal of Mathematics . 1966
  • 10Nehary Z.Oscillation criteria for second order linear differential equations. Transactions of the American Mathematical Society . 1957

共引文献10

同被引文献42

  • 1林文贤.一类非线性偶数阶中立型方程的振动准则[J].工程数学学报,2005,22(1):159-162. 被引量:19
  • 2Ladas G. Oscillation Theory of Delay Differential Equations[ M]. New York:Oxford University Press, 1991.
  • 3Agarwal R P, Grace S R, O Regan D. Oscillation Theory for Difference and Functional Differential Equations [ M ]. Kluwer : Dordrecht,2000.
  • 4Agarwal R P,Grace S R,O Regan D. Oscillation Theory for Second order Dynamic Equations[ M ]. Eondon:Taylor & Francis,2003.
  • 5屈英,孙博.三阶非线性中立型微分方程的振动性[J].数学实践与认识,2011,41(6):244 - 248.
  • 6Erbe L. Oscillation criteria for second order nonlinear delay equations [J]. Canada Math Bull, 1973(16): 49 - 56.
  • 7Kiguradze I T. On the oscillation of solutions of the equation [J]. Math Sb, 1964, 65(2): 172 - 187.
  • 8Philos Ch G. Oscillation theorems for linear differential equation of second order [J]. Arch Math, 1989(53): 482 - 492.
  • 9Dzurina J. Asymptotic properties of the third order delay differential equations[J]. Nonlinear Anal TMA, 1996(26) :33- 43.
  • 10Grace S R, Agarwal R P, Pavani R, et al. On the oscillation criteria for third order nonlinear functional differential equa- tions[J]. Appl Math Comput, 2008(202) :102-112.

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部