期刊文献+

噪声背景下机械振动弱特征信号提取方法研究 被引量:1

Study on Weak Mechanical Vibration Feature Extraction from Mixed Signal Including Noise
下载PDF
导出
摘要 振动状态监测时,传感器采集的信号是各机械设备信号和环境噪声的混合信号。盲源分离技术可以有效去除环境噪声的干扰并提取出各设备的特征信号。提出噪声背景下机械振动弱特征信号提取的盲源分离算法,并对混有噪声的机械振动信号的特征进行试验研究,结果表明:该算法不仅可以去除环境噪声的干扰,而且可以实现对能量较弱的特征信号的提取。 For monitoring vibration,the signals acquired from sensors are the mixture of vibration signal of machines and the environmental noise.The blind source separation can extract the feature signals of each machine from the mixed signals.A blind source separation algorithm was proposed herein to extract the feature signal in the presence of the environmental noise.The experimental investigation of extraction of the feature signal from mechanical vibration signals mixed with environmental noise was carried out,and the results show that the algorithm can eliminate the influence of environmental noise and extract the weak signals of the machine.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2011年第7期836-839,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50775218) 国防科技预研基金资助项目(9140A10050506JB1113)
关键词 振动噪声监测 盲源分离 弱特征信号 特征提取 vibration and noise monitoring blind source separation weak feature signal feature extraction
  • 相关文献

参考文献6

二级参考文献16

  • 1汪军,何振亚.瞬时混叠信号盲分离[J].电子学报,1997,25(4):1-5. 被引量:11
  • 2汪军,何振亚.卷积混叠信号盲分离[J].电子学报,1997,25(7):7-11. 被引量:5
  • 3[1]Jutten C, Herault J. Blind separation of sources. Part Ⅰ. An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing, 1991, 24:1~20.
  • 4[2]Amari S, Cichochi A. Adaptive blind signal processing: neural network approaches [J]. Proc IEEE, 1998, 86(10):2026~2048.
  • 5[3]Cardoso J F. Blind signal separation: statistical principles [J]. Proc IEEE, 1998, 86(10):2009~2025.
  • 6[4]Comon P. Independent component analysis, a new concept?[J]. Signal Processsing, 1992, 36(3):287~314.
  • 7[5]Cardoso J F, Laheld B. Equivariant adaptive source separation [J]. IEEE Trans Signal Processing, 1996, 44:3017~3030.
  • 8Hyv(a)rinen A,Oja E.Independent Component Analysis:algorithms and applications[J].Neural networks.2000,13:411-430
  • 9Hyv(a)rinen A,Oja E.Independent Component Analysis:A Tutorial[EB/OL].http://www.cis.hut.fi/projects/ica
  • 10P.Comon.Independent component analysis,a new conception.Signal Processing,1994,36:287 ~314.

共引文献78

同被引文献20

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部