期刊文献+

复杂网络中社团结构划分的快速分裂算法 被引量:1

Fast splitting algorithm for partitioning community structure in complex networks
下载PDF
导出
摘要 针对已有分裂算法时间复杂度较高,不适用于社团数目未知的大型网络等问题,借鉴电压谱分割算法和GN算法的思想,提出以扩散距离为分割依据,以模块度函数为社团结构划分满意度的快速分裂算法。实验结果表明,与已有的社团结构划分算法相比,基于扩散距离的快速分裂算法能够得到高质量的社团结构,其时间复杂度较低,不仅对稀疏网络能够快速运算,对非稀疏网络更能高效求解,这进一步体现出算法具有较高的稳定性。 Most of the proposed splitting algorithms are not suitable for very large networks because of their high time complexity and unknown quantity of community number.Referencing the voltage spectrum segmentation algorithm and GN algorithm,this paper proposed a fast splitting algorithm based on diffusion distance and the modularity function.Its segmentation basis was the diffusion distance,and the ability of modularity function could find the best community number in large networks.Experimental results show that the algorithm has better partitioning ability and lower time complexity than the proposed partitioning community structure algorithms.Not only it is capable of fast operation for the sparse network,but also for the non-sparse network,which reflects the algorithm has high stability.
出处 《计算机应用研究》 CSCD 北大核心 2011年第4期1242-1244,1250,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(71071096) 高等学校博士学科点专项科研基金资助项目(20070248054)
关键词 复杂网络 社团结构 分裂算法 模块度 扩散距离 complex networks community structure splitting algorithm modularity diffusion distance
  • 相关文献

参考文献17

  • 1NEWMAN M E J. Modularity and community structure in networks [J]. Proceeding of the National Academy of Sciences of the United Statesof America,2006,103 ( 23 ) :8577- 8582.
  • 2GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[ J ]. Proceeding of the National Academy of Sciences of the Un ted States of Amer ca, 2002,99 ( 12 ) : 7821- 7826.
  • 3GLEISER P, DANON L. Community structure in jazz[ J ]. Advances in Complex Systems,2003,6(4) :565-573.
  • 4RADICCHI F, CASTELLANO C, CECCONI F, et al. Defining and identifying communities in networks[J]. Proceeding of the National Academy of Sciences of the United States of America, 2004,101 (9) :2658-2663.
  • 5TSUCHIURA H, OGATA M, TANAKA Y, et al. Electronic states around a vortex core in high-Tc superconductors based on the t-J model [ J ]. Physical Review t3,2003,68 ( 1 ) :012509.
  • 6ZHOU Hai-jun. Network landscape from a Brownian particle' s perspective [ J ]. Physical Review E,2003,67 (4) :041908.
  • 7ZHOU Hai-jun. Distance, dissimilarity index, and network community strucmre[J]. Physical Review E,2003,67(6):061901.
  • 8FORTUNATO S, LATORA V, M4.RCHIORI M. A method to find community structures based on information centrality [ J]. Physical Review E ,2004,70 (5) :056104.
  • 9赵凤霞,谢福鼎.基于K-means聚类算法的复杂网络社团发现新方法[J].计算机应用研究,2009,26(6):2041-2043. 被引量:18
  • 10李峻金,向阳,牛鹏,刘丽明,芦英明.一种新的复杂网络聚类算法[J].计算机应用研究,2010,27(6):2097-2099. 被引量:8

二级参考文献26

  • 1NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[ J]. Phys Rev E, 2004,69(2) :026113.
  • 2CLAUSET A,NEWMAN M E J,MOORE C. Finding community structure in very large networks [ J ]. Phys Rev E,2004,70 (6) :066111.
  • 3BEZDEK J C, BOGGAVARAPU S, HALL L O,et al. Genetic algorithm guided clustering [ C ]//Proc of the 1st Conference on Evolutionary Computation. [ S. 1. ] : IEEE Press, 1994:34-39.
  • 4NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Phys Rev E,2004,69(6) :066133.
  • 5KERNIGHAN B W,LIN S. An efficient heuristic procedure for partitioning graphs[ J]. Bell System Technical Journal, 1970,49 ( 1 ) : 291-307.
  • 6POTHEN A, SIMON H, LIOU K P. Partitioning sparse matrices with eigenvectors of graphs [ J ]. SIAM d Matrix Anal Appl, 1990,11 (3) : 430-452.
  • 7HAN Jia-wei, KANBER M. Data mining: concepts and techniques [ M ]. San Francisco : Morgan Kaufmann Publishers,2000.
  • 8ORDONEZ C, OMIECINSKI E. Efficient disk-based K-means clustering for relational databases [ J]. IEEE Trans on Knowledge and Data Engineering,2004,16 ( 8 ) :909-921.
  • 9FORTUNATO S, LATORA V, MARCHIORI M. A method to find community structures based on information centrality [ J ]. Phys Rev E, 2004,70:056104.
  • 10ZACHARY W W. An information flow model for conflict and fission in small groups[ J]. Journal of Anthropological Research, 1977,33: 452-473.

共引文献23

同被引文献16

  • 1GRANOVETTER M S. The strength of weak ties[J]. American Journal of Sociology. 1973 , 78(6): 1360-1380.
  • 2KERNIGHAN B W, LIN S. An efficient heuristic procedure for partitioning graphs[J]. Bell System Technical Journal, 1970,49 (1): 291-307.
  • 3NEWMAN M E J. A measure of betweenness centrality based on random walks[J]. Social Networks, 2005, 27(1): 39-54.
  • 4GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. National Academy of Sciences, 2002, 99(6): 7821-7826.
  • 5CLAUSET A, NEWMAN ME J ,MOORE C. Finding community structure in very large networks[J]. Physical Review E: Statistical v Nonlinear and Soft Matter Physics, 2004, 70( 6) : 6111-6116.
  • 6PALLA G,DERDNYI I,FARKAS Ivet al. Uncovering the overlapping community structure of complex networks in nature and society [J]. Nature,2005 ,435 :814-818.
  • 7RAGHAVAN U N,ALBERT R,KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E,2007, 76(3) :6106-6111.
  • 8BLONDEL V D,GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J], Journal of Statistical Mechanics, 2008(10) : 10008-10018.
  • 9TANG L, LIU H, ZHANG J. Identifying evolving groups in dynamic multi-mode networks[J]. IEEE Transactions on Knowledge and Data Engineering,2012,24(1) :72-85.
  • 10FABER V. Clustering and the continuous k-means algorithm[J]. Los Alamos Science, 1994,22:138-144.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部