期刊文献+

基于社区网络内容的个性化推荐算法研究 被引量:12

Personalized recommendation algorithm research based on content in social network
下载PDF
导出
摘要 针对用户在社区网络中面对海量的信息和资源,如何快速便捷地获得自己感兴趣内容的问题,提出一种基于社区网络内容的个性化推荐算法。在得到相同兴趣用户聚类的基础上,该算法首先通过用户访问日志信息挖掘相似内容推荐项,然后根据用户兴趣挖掘新的内容推荐项。实验结果表明,该算法不仅提高了内容推荐精度,而且扩展了内容覆盖面。 Based on the issue that how to acquire the interesting information for users quickly and effectively from massive data,this paper proposed a personalized recommendation algorithm based on content in social network.On the basis of obtaining user clusters with common interest,firstly used content similarity algorithm to mine content recommendation items based on social network logs,then obtained new content recommendation items based on user interest.The experimental results show that the algorithm can not only improve the accuracy of the content recommendation,but also extend the coverage of content.
作者 王洁 汤小春
出处 《计算机应用研究》 CSCD 北大核心 2011年第4期1248-1250,共3页 Application Research of Computers
关键词 社区网络 用户聚类 内容过滤 个性化推荐 social network user cluster content filter personalized recommendation
  • 相关文献

参考文献8

  • 1刘耀庭.社交网络结构研究[D].杭州:浙江大学,2008.
  • 2YOUNG A L, QUAN-HAASE A. Information revelation and Intemet privacy concerns on social network sites: a case study of facebook [C]//Porc of the 4th International Conference on Communities and Technologies. New York :ACM Press,2009:265-274.
  • 3LI Yung-ming, HSIAO Han-wen. Recommender service for social network based application [ C]//Proc of the l lth International Conference on Electronic Commerce. New York: ACM Press, 2009: 378- 381.
  • 4WALTER F E, BA33'ISTION S, SCHWEITZER F. A model of a trust-based recommendation system on a social network [ J ]. Autonomous Agents and Multi-agents Systems,2006,16( 1 ) :57-74.
  • 5WU Hui-ju, TING I H, WANG Kai-yu. Combining social network analysis and Web mining techniques to discover interest groups in the blogspace [ C ]//Proc of the 4th International Conference on Innovative Computing Internation and Control. 2009 : 1180- 1183.
  • 6曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 7BALABANOVIC M, SHOHAM Y. Content-based collaborative recommendation [ M ] New York : ACM Press, 1997:66- 72.
  • 8HERLOCKER J, KONSTAN J. Evaluating collaborative filtering recommender systems [ J ]. AGM Trans on Information Systems, 2004,22( 1 ) :5-53.

二级参考文献41

  • 1Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415.
  • 2Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247.
  • 3Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999.
  • 4Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381.
  • 5Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72.
  • 6Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Application of dimension ality reduction in recommender system--a case study. In: Jhingran, A., Mason, J.M., Tygar, D., eds. Proceedings of the ACM WebKDD Workshop on Web Mining for E -Commerce. New York: ACM Press, 2000.
  • 7Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Analysis of recommendati on algorithms for e-commerce. In: Proceedings of the ACM Conference on Electroni c Commerce. New York: ACM Press, 2000. 158~167.
  • 8Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive a lgorithms for collaborative filtering. In: Cooper, G.F., Moral, S., eds. Proceed ings of the 14th Conference on Uncertainty in Artificial Intelligence. San Franc isco: Morgan Kaufmann Publishers, 1998. 43~52.
  • 9Aggarwal, C.C., Wolf, J.L., Wu, K., et al. Horting hatches an egg: a new raph-theoretic approach to collaborative filtering. In: Chaudhuri, S., Madigan, D., Fayyad, U., eds. Proceedings of the ACM International Conference on Knowledg e Discovery and Data Mining. New York: ACM Press, 1999. 201~212.
  • 10Sarwar, B., Karypis, G., Konstan, J., et al. Item-Based collaborative fil tering recommendation algorithms. In: Shen, V.Y., Saito, N., eds. Proceedings of the 10th International World Wide Web Conference (WWW10). 2001. 285~295.

共引文献395

同被引文献103

引证文献12

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部