摘要
针对离线算法的不足,提出了一种在线虚拟参考反馈整定(VRFT)数据驱动算法。首先利用滤波器改变了离线算法的时序,得到用于实时运算的有效数据;然后提出了基于带遗忘因子递推最小二乘法的VRFT控制器参数辨识方法,不依赖于对象模型,完全利用实时数据实现了在线控制器参数整定。仿真结果表明,在对象特性变化较大的情况下,在线VRFT方法优于传统的离线VRFT方法,具有很好的自适应性。
This paper proposed an on-line virtual reference feedback tuning(VRFT)method.Introduced an effective filter to shift time-sequence in off-line algorithm in order to obtain real-time computable data.Secondly it presented an on-line VRFT algorithm based on recursive least square method(RLSM) with forgetting factor.This method only used real-time data to get optimal controller on-line with no system information and identification.Simulation results show that the proposed method is self-adaptive and superior to conventional VRFT when dealing with time-variant system.
出处
《计算机应用研究》
CSCD
北大核心
2011年第4期1254-1256,1265,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(60704012)
广东省佛山市产学研资助项目(2008B1034)
华南理工大学2010SRP项目(x2zdD210627w)