期刊文献+

基于主元分析和D-S证据理论的传感器故障诊断与应用 被引量:2

Based on principal component analysis and D-S evidence theory and application of sensor fault diagnosis
下载PDF
导出
摘要 针对井下传感器状态类型复杂多变、被测参量数据庞大等问题,采用主元分析法对数据进行降维处理。利用RBF神经网络实现特征层数据融合,并建立基本信任分配函数,再以证据理论对非精确信息的表示和推理优势,有效实现了故障检测和分离。实例仿真表明,利用主元分析和D-S理论能正确定位并准确分离出失效传感器。 Because the type sensor for underground complex,the measured parameters of the data were huge,used principal component analysis to reduce the dimensions of the data.Used RBF neural network to carry out the feature level data fusion,and established distribution function of basic trust,further used the evidence theory advantage of representation and reasoning to inaccurate information,realized the fault detection and isolation capabilities effectively.The simulation shows that the use of principal component analysis and D-S theory can be correctly located and accurately isolate the failure of sensors.
出处 《计算机应用研究》 CSCD 北大核心 2011年第4期1315-1317,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(50874059) 辽宁省创新团队项目(2007T071) 辽宁省重大科技项目(2007231003) 辽宁省优秀人才基金资助项目(2007R18) 国家教育部博士点基金资助项目(200801470003)
关键词 主元分析 RBF神经网络 D-S理论 故障诊断 PCA(principal components analysis) RBF neural network D-S theory fault diagnosis
  • 相关文献

参考文献8

二级参考文献27

  • 1周东华,孙优贤,席裕庚,张钟俊.一类非线性系统参数偏差型故障的实时检测与诊断[J].自动化学报,1993,19(2):184-189. 被引量:26
  • 2罗新荣,俞启香.矿井瓦斯预测与评价[J].中国安全科学学报,1994,4(3):45-52. 被引量:11
  • 3白雪冰,张佳薇,赵真非.智能化木材含水率自动测试系统的开发[J].木材工业,2006,20(3):35-37. 被引量:9
  • 4蔡兴国 马平.基于信息融合技术的并发故障诊断的研究.中国电机工程学报,2004,24(10):238-243.
  • 5Dempf D, List T. On-line data reconciliation in chemical plants [ J ]. Computer & Chemical Engineering,1998,22(3) :1023 -1025.
  • 6Parikh C R, Pont M J, Jones N B. Application of dempstershafertheory in condition monitoring systems: a case study[ J ]. Pattern Recognition Letters,2001,22 (6 - 7 ) :777 - 785.
  • 7Shafer G. A mathematical theory of evidence [ M]. New Jersey: Princeton University Press, 1976.
  • 8Dempster A P. Upper and lower probabilities induced by a multivalued mapping [J]. Annals of Mathematical Statistics, 1967,28 (2) :325 - 339.
  • 9[1]Dunia R, Qin S J. Joint diagnosis of process and sensor faults using principle component analysis[J]. Control Engineering Practice, 1998, 6:457-469.
  • 10[2]Qin S J, Li W H. Detection and identification of faulty sensors with maximum sensitivity[C]. In:Proceedings of American Control Conference, California, 1999,613-617.

共引文献51

同被引文献30

  • 1GHASEMI J, MOLLAEI M R K, GHADERI R, et al. Region merging strategy for brain MRI segmenta- tion using Dempster-Shafer theory[J]. Iranian Journal of Fuzzy Systems, 2013, 10(2): 41 56.
  • 2ZHOU Jian, LIU Linfeng, GUO Jian, et al. Multi- sensor data fusion for water quality evaluation using Dempster-Shafer evidence theory[EB/OL]. [2014-11- 247. httt)..//dx, doi. or::/10. 1155/2013/147419.
  • 3ZADEH L A. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of eombinationEJ:. AI Magazine, 1986, 2(7): 85-90.
  • 4ZADEH L A. Review of books..A mathematical theoryof evidence:J:. AI Magazine, 1984, 5(3): 81-83.
  • 5VOOBRAAK F. A computationally efficient approxi- mation of Dempster-Shafer theory EJ:. International Journal of Man-Machine Study, 1989, 30: 525-536.
  • 6MURPHY C K. Combining belief functions when ev- idence conflicts[J]. Decision Support Systems, 2000, 29(1).. 1-9.
  • 7SMETS P. Constructing the pignistic probability function in a context of uncertainty[C]//Proceedings of the Fifth Annual Conference on Uncertainty in Ar- tificial Intelligence. North-Holland Publishing Co. , 1990: 29-40.
  • 8SMETS P. The degree of belief in a fuzzy event[J:. Information Sciences, 1981, 25(1): 1-19.
  • 9DEMPSTER A P. Upper and lower probabilities in- duced by a muhivalued mapping:J]. The Annals of Mathematical Statistics, 1967, 38(2): 325-339.
  • 10YAGER R R. On the Dempster-Shafer {ramework and new combination rulesl-J:. Information Sciences, 1987, 41(2).. 93-137.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部