期刊文献+

基于模糊描述逻辑的个性化推荐系统建模 被引量:11

Fuzzy semantic personalized recommendation system modeling
下载PDF
导出
摘要 为了解决现有个性化推荐系统中缺乏对模糊语义信息处理的能力,建立模糊语义推荐系统模型,使用模糊描述逻辑实现了该模型,并给出了推荐算法。在实现模型的过程中引入了两条规则,实现了概念层次关系在兴趣程度和关联程度上的传递。最后通过实例证明,通过将用户的兴趣和待选资源的相关概念在语义层面进行适当的扩展,模糊语义推荐系统模型能更准确地描述用户的兴趣并产生更多符合用户兴趣的推荐项目。 In order to solve the lack of personalized recommendation system on the semantic information processing,this paper built the fuzzy semantic recommendation system model,which could descript the fuzzy semantic in user's interest information.This paper also proposed a kind of recommendation algorithm to calculate the relationship between users and resource.Fuzzy description logic was used to apply the model in a special domain,also introduced two rules to achieve the ability of transmission between different level of semantic concepts both in user profiles and resource profiles.The experiment shows that fuzzy semantic recommendation system model can produce more related results for particular user than classic methods,it can discovery more new interest which is implicated in the interest concepts.
作者 牟向伟 陈燕
出处 《计算机应用研究》 CSCD 北大核心 2011年第4期1429-1433,共5页 Application Research of Computers
基金 国家高等学校博士学科点专项科研基金资助项目(200801510001) 国家自然科学基金资助项目(70801007)
关键词 个性化推荐 模糊描述逻辑 用户兴趣 personalized recommendation fuzzy description logic user profile
  • 相关文献

参考文献19

  • 1BAKOS Y. The emerging role of electronic marketplaces on the Internet[J]. Communications of the ACM,1998,41 (8) :35-42.
  • 2PAZZANI M J, BILLSUS D. Content-based recommendation systems [ M ]. Berlin : Springer-Verlag,2007.
  • 3SCHWAB I, POHL W, KOYCHEV I. Learning to recommend from positive evidence [ C]//Proc of the International Comference on Intelligent User Interfaces. New York : ACM Press, 2000 : 241-247.
  • 4BOLLACKER K D , LAWRENCE S, GILES C L. CiteSeer: an au- tonomous Web agent for automatic retrieval and identification of interesting publications[ C]//Proe of the 2nd Internalional Conference on Autonomous Agents. New York : ACM Press, 1995 : 116-123.
  • 5MLADENIC D. Machine learning for better Web browsing, AAAI TR SS-00-01 [ R]. Ljubljana: Depe. of Intuigent Systems, J. Stefan Institute, 2000 : 82 - 84.
  • 6EIRINAKI M, VAZIRGIANNIS M, KAPOGIANNIS D. Web path recommendations based on page ranking and Markov models [ C ]//Proc of the 7th Annual ACM International Workshop on Web Infolrnation and Data Management. New York: ACM Press,2005:2-9.
  • 7GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry [ J ]. Communications of the ACM,1992,35(12) :61-70.
  • 8RESNICK P, IACOVOU N, SUSHAK M, et al. GroupLens: an open architecture for collaborative filtering of netnews [ C]//Proc of the 1994 Computer Supported Cooperative Work Conference, New York: ACM, 1994 : 175-186.
  • 9JOACHIMS T, FREITAG D, MITCHELL T. WebWateher: a tour guide for the World Wide Web[ C]//Proc of International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 1997 : 770-777.
  • 10许建潮,王红梅.改进的协同过滤算法[J].吉林大学学报(信息科学版),2008,26(1):99-105. 被引量:7

二级参考文献32

共引文献59

同被引文献108

引证文献11

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部