期刊文献+

基于免疫的异常检测中实值自体集优化算法 被引量:1

Real-valued self set optimization algorithm in immunity-based anomaly detection
下载PDF
导出
摘要 针对免疫异常检测一直被忽视的实值自体集多分区、样本重叠率高和噪声等现象,以及造成的检测器生成代价高和边界漏洞等问题,提出一种实值自体集优化算法。算法通过模糊聚类算法处理集合多分区问题,利用高斯理论对自体集中的噪声样本、高重叠率等问题进行处理。通过Iris数据集和网络数据验证,算法可以有效地解决以上问题,提高生成检测器的效率和系统检测率。 The real-valued self set in the immunity-based anomaly detection which is used to train detectors has some defects: multi-area,overlapping,noising sample,etc,which can cause some problems,such as the boundary holes of detector set,the high cost of generating detectors,etc.To solve the problems,this paper proposed a real-valued self-set optimization algorithm which used fuzzy clustering algorithm and Gaussian-distribution theory.The fuzzy clustering delt with multi-area and the Gaussian-distribution delt with the overlapping and noising.It tested algorithm by Iris data and real network data.Experimental results show that,the optimized self set can increase the efficiency of detector generation effectively,and improve the system's detection rate.
出处 《计算机应用研究》 CSCD 北大核心 2011年第4期1434-1436,1445,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60671049)
关键词 免疫异常检测 实值 自体集 优化 immunity-based anomaly detection real-valued self set optimization
  • 相关文献

参考文献10

  • 1PATCHA A, PARK J M. An overview of anomaly detection techniques: existing solutions and latest technological trends [ J]. Computer Networks ,2007,51 ( 12 ) :3448-3470.
  • 2HOFMEYR S, FORREST S. Architecture for an artificial immune system[ J ]. IEEE Trans on Evo ut onary Computat on, 2000,8 (4) : 443-4?3.
  • 3SIMON P T, JUN H. A hybrid artificial immune system and self organising map for network intrusion detection [ J]. Information Sciences, 2008,178 ( 15 ) : 3024- 3042.
  • 4FORREST S, PERELSON A S, ALLEN L. Self-non-self discrimination in a computer[ C]//Proc of IEEE Symposium on Research in Security and Privacy. 1994:202-212.
  • 5DAL D, ABRAHAM S, ABRAHAM A, et al. Evolutionary induced secondary immunity: an artificial immune systems based intrusion detection systems[ C ]//Proc of the 7th Computer Information Systems and Industrial Management Applications Conference. 2008: 65-70.
  • 6DASGUPTA D, GONZALEZ F. An immunity based technique to characterize intrusions in computer network[ J]. IEEE Trans on Evolutionary Computation,2002,6 ( 3 ) :281 - 291.
  • 7BOUKERCHE A, MACHADO R B, JUCA R L. An agent based and biological inspired real-time intrusion detection and security model for computer network operations [ J ]. Computer Communications, 2007,30 ( 13 ) : 2649 - 2660.
  • 8GONZALEZ F, DASGUPTA D, KOZEMA D. Combining negative and classification techniques for anomaly detection [ C ]// Proc of the 2002 Congress on Evolutionary Computation. 2002 : 705- 710.
  • 9ZHOU Ji, DASGUPTA D. V-Detector: an efficient negative selection algorithm with "probably adequate" detector coverage [ J ]. Information Science,2009,179(lO) :1390-1406.
  • 10BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部