期刊文献+

准Toeplitz测量矩阵的有限等距性质分析 被引量:4

RIP analysis for quasi-Toeplitz measurement matrices
下载PDF
导出
摘要 Toeplitz测量矩阵的卷积特性使压缩感知理论在线性时不变系统辨识问题中得到广泛应用。但在信号频率较高的场合往往需要对测量结果进行欠采样,以利用压缩感知理论降低系统对采样频率的要求,这导致测量模型中的测量矩阵变为由Toeplitz矩阵中等间隔抽取若干行组成的子矩阵(准Toeplitz矩阵)。为此讨论了准Toeplitz矩阵作为测量矩阵的可行性。通过理论推导证明了准Toeplitz矩阵的有限等距性质,在仿真中比较了使用准Toeplitz矩阵与其他测量矩阵的重构效果。结果表明,准Toeplitz满足有限等距性质,使用准Toeplitz矩阵的重构效果与其他测量矩阵相近,可以作为压缩感知测量矩阵。 CS can be widely utilized in linear time-invariant(LTI)system identification problems through the use of Toeplitz matrices.However,measurements were usually need to be undersampling in the applications which signal frequency was high to reduce the requirement of sampling fequency,this led the measurement matrices turn into quasi-Toeplitz matrices which formed by extracting a part of row vectors from Toeplitz matrices.This paper considered quasi-Toeplitz matrices as sensing matrices.Theoretical derivation showed that the quasi-Toeplitz matrices satisfy the restricted isometry property(RIP).Compared the performance of quasi-Toeplitz matrices and other compressed sensing matrices in simulations.It shows that the quasi-Toeplitz matrices perform similar to other compressed sensing matrices and can be used as CS measurement matrices.
出处 《计算机应用研究》 CSCD 北大核心 2011年第4期1512-1514,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60672157 60672158) 重庆市自然科学基金资助项目(CSTC2009BB2028)
关键词 压缩感知 测量矩阵 准Toeplitz矩阵 有限等距性质 compressed sensing(CS) measurement matrices quasi-Toeplitz matrices RIP(restricted isometry property)
  • 相关文献

参考文献10

  • 1DONOHO D. Compressed sensing[ J]. IEEE Trans on Information Theory, 2006,52 ( 4 ) : 1289-1306.
  • 2CANDES E. Compressive sampling[ C ]//Proe of International Congress of Mathematicians. 2006 : 1433-1452.
  • 3CANDES E J, ROMBERG J,TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency itfformation [J]. IEEE Trans on Information Theory,2006,52(2) :489-509.
  • 4石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:715
  • 5CANDES E. The restricted isomers, property and its implications for compressed sensing [ J ]. Comptes Rendus Mathematique, 2008, 346(9-10) :589-592.
  • 6CANDES E, ROMBERG J. Sparsity and incoherence in compressive sampling[ J]. Inverse Problems,2007,23(3 ) :969-985.
  • 7BAJWA W, HAUPT J, RAZ G,et al. Toeplitz-structured compressed sensing matrices[ C ]//Proc of the 14th 1EEE/SP Workshop on Statistical Signal Processing. 2007:294-298.
  • 8TROPP J,WAKIN M,DUARTE M,et al. Random filters for compressive sampling and reconstruction [ C ]//Proc of IEEE lnlemational Conference on Acoustics, Speech, and Signal Processing. 2006.
  • 9HAUPT J, BAJWA W, RAZ G, et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Trans on Information Theory,2010,56( 11 ) :5862-5875.
  • 10TROPP J A, GUBERT A C. Signal recovery, from random measuremerits via orthogonal matching pursuit[ J ]. IEEE Trans on Information Theory,2007,53 ( 12 ) :4655- 4666.

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献714

同被引文献36

  • 1焦李成,谭山,刘芳.脊波理论:从脊波变换到Curvelet变换[J].工程数学学报,2005,22(5):761-773. 被引量:40
  • 2Candes E J. Compressive sampling[C] // Proceedingson the International Congress of Mathematicians. Ma-drid, Spain: European Mathematical Society, 2006 :1433-1452.
  • 3Donoho D L. Compressed sensing[J].IEKE Transac-tions on Information Theory,2006,52(4) :489-509.
  • 4Strohmer T. Measure what should he measured : Pro-gress and challenges in compressive sensing[J3. Sig-nal Processing Letters, 2012 . 19(12) : 887-893.
  • 5Candes E. Romberg J. Tao T. Robust uncertaintyprinciples: Exact signal reconstruction from highlyincomplete frequency information [J], IEEE Transac-tions on Information Theory, 2006. 52(2) . 489-509.
  • 6Hilbert A,Indyk P. Sparse recovery using sparsematrices[Jj. Proceeding of the IEEK, 2010, 98(6):937-947.
  • 7Haupt J. Toeplitz compressed sensing matrices withapplications to sparse channel estimation [ J ].IEEETransactions on Information Theory. 2010. 56( 11 ):5862-5875.
  • 8Sanandaji H M, Vincent T L. Wakin M B. Concen-tration of measure inequalities for Toeplitz matriceswith applications [ J ].IEF2E Transactions on SignalProcessing. 2013, 61(1): 109-117.
  • 9Bajwa W U,Haupt J D,Raz G M, et al. Toeplitz-structured compressed sensing matrices[C] // SSPy 07.IEEE/SP 14th Workshop on IEEE. USA: IEEE,2007: 294-298.
  • 10Candes E,Tao T. Near optimal signal recovery fromrandom projections: Universal encoding strategies...IEEE Transactions on Information Theory, 2006,52(12):5406 - 5425.

引证文献4

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部