摘要
针对云天背景下红外弱小目标的检测算法中常见的目标漏检和检测错误问题,提出了一种基于奇异值分解背景抑制和粒子滤波联合检测算法。该算法首先采用奇异值分解滤波抑制红外图像背景,获取候选目标位置;然后采用粒子滤波算法估计目标运动状态,获取目标搜索窗口;最后将单帧检测候选目标与预测的搜索窗口相结合实现小目标检测。对真实红外图像序列进行实验表明,该方法有效地解决了SVD滤波单帧漏检和粒子滤波预测错误导致的目标检测错误问题,从而提高了低信噪比下弱小目标的检测能力。
In order to improve the detection ability for infrared small targets under cloudy sky background,this paper proposed a novel detection algorithm based on SVD filter and particle filter.In this algorithm,firstly,utilized a SVD filter to suppress the background and obtain several candidate targets.Secondly,utilized particle filter to track the target and got the target search window.Finally,detected the target by combining the candidate targets with the search window.Several experiments show that the proposed algorithm can detect the small target effectively when the background is complex or noisy.
出处
《计算机应用研究》
CSCD
北大核心
2011年第4期1553-1555,1572,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(60970069)
航天创新基金资助项目
西北工业大学研究生创业种子基金资助项目(Z2010069)
关键词
奇异值分解
背景抑制
粒子滤波
红外小目标检测
singular value decomposition(SVD)
background suppression
particle filter
infrared small target detection