摘要
Modular inverse arithmetic plays an important role in elliptic curve cryptography. Based on the analysis of Montgomery modular inversion algorithm, this paper presents a new dual-field modular inversion algorithm, and a novel scalable and unified architecture for Montgomery inverse hardware in finite fields GF(p) and GF(2n) is proposed. Furthermore, this architecture based on the new modular inversion algorithm has been verified by modeling it in Verilog-HDL, and accomplished it under 0.18 μm CMOS technology. The result indicates that our work has better performance and flexibility than other works.
Modular inverse arithmetic plays an important role in elliptic curve cryptography. Based on the analysis of Montgomery modular inversion algorithm, this paper presents a new dual-field modular inversion algorithm, and a novel scalable and unified architecture for Montgomery inverse hardware in finite fields GF(p) and GF(2n) is proposed. Furthermore, this architecture based on the new modular inversion algorithm has been verified by modeling it in Verilog-HDL, and accomplished it under 0.18 μm CMOS technology. The result indicates that our work has better performance and flexibility than other works.
基金
Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2008AA01Z103)