期刊文献+

一类生物种群投资的最优采收控制

Optimal Harvesting Control in the Investment of a Population
原文传递
导出
摘要 在原有的Gauss白噪声刻画环境噪声项的基础上,考虑环境不可预知的跳跃性变化,运用Lévy白噪声建立了有界环境中的随机生物种群模型.并且,引入随机奇异控制来描述投资者的最优采收策略.进一步地,构造一族有着不同起点的控制问题,利用动态规划的思想,给出了最优采收控制问题解的充分条件,进而,将随机控制问题的求解转化为确定型偏微分方程的求解. In this paper,based on the existing models where the stochastic term is characterized by Gaussian white noise,we develop by Levy white noise the stochastic population equation in a crowded stochastic environment,where the unpredictable jump changes are considered. Then we introduce stochastic singular control to describe the investor's optimal harvesting. Furthermore,we propose a family of control problems in order to apply dynamic programming technique.And we obtain sufficient conditions for the solution of optimal harvesting control problem, where the solutions of the stochastic control problem are converted to the solutions of the deterministic partial differential equations.
出处 《生物数学学报》 CSCD 北大核心 2010年第4期639-646,共8页 Journal of Biomathematics
关键词 随机种群方程 有界随机环境 Lévy白噪声 随机奇异控制 动态规划 Stochastic population equation Crowded stochastic environment Lévy white noise Stochastic singular control Dynamic programming
  • 相关文献

参考文献11

  • 1Holden H, Фksendal B, UbФe J, et al. Stochastic Partial Differential Equations-A Modeling, White Noise Functional Approach[M]. Boston: Birkhauser, 1996.
  • 2LindstrФm T, Фksendal B, UbФe J. Wick multiplication and It6ǒ-Skorohod stochastic differential equations[A]. in: Albeverio B, Fenstad J E, Holden H, Lindstrom T. Ideas and Methods in Mathematical Analysis, Stochastics and Applications[C]. Cambridge: Cambridge University Press, 1992. 183-206.
  • 3Benth F E. A note on population growth in a crowded stochastic environment[A], in: Korezlioglu H, Фksendal B, Ustünel A S. Stochastic Analysis and Related Topics 5[C]. Boston: Birkhauser, 1996. 111-119.
  • 4Li Ronghua, Pang W K, Wang Qinghe. Numerical analysis for stochastic age-dependent population equations with Poison jumps[J]. Journal of Mathematical Analysis and Applications, 2005, 327(2): 1214-1224.
  • 5朱少平,黄斌,王拉省.带跳与年龄相关随机种群模型方程收敛性分析[J].生物数学学报,2009,24(1):120-128. 被引量:4
  • 6LФkka A, Фksendal B, Proske F. Stochastic partial differential equations driven by Lévy space time white noise[J]. Annals of Applied Probability, 2004, 14(3):1506-1582.
  • 7冯敬海,王岩,冯恩民.由纯跳Lévy白噪声驱动的随机薛定谔方程[J].大连理工大学学报,2008,48(5):769-774. 被引量:2
  • 8冯敬海,王岩,冯恩民.复合白噪声驱动的输运方程[J].应用概率统计,2009,25(6):597-610. 被引量:2
  • 9Yong Jiongmin, Zhou Xun Yu. Stochastic Controls: Hamiltonian Systems and HJB Equations[M]. New York: Springer, 1999, 157-184.
  • 10Фksendal B, Sulem A. Applied Stochastic Control of Jump Diffusion[M]. 2th edition, Berlin: Springer, 2007, 77-87.

二级参考文献25

  • 1Cushing J M.The dynamics of hierarchical age-structured populations[J].Journal of Mathematical Biology,1994,32(7):705-729.
  • 2Kim Miyoung,Park Eunjae,Characteristic finite element methods for diffusion epidemic models with agestructured populations[J].Applied Mathematics and Computation.1998,97(2):55-70.
  • 3Anita S.Analysis and Control of Age-Dependent Popution Dynamics[M].Netherlands:Kluwer Academic Pubilsher,2000.
  • 4Mao X R.Environmental Brownian noise suppresses explosions in population dynamics[J].Stochastic Processes and Their Applications.2002,97(1):95-110.
  • 5Zhang Qi-Min,Liu Wen-An,Nie Zan-Kan.Existence,uniqueness and exponential stability for stochastic age-dependent population[J].Applied Mathematics and Computation.2004,154(3):183-201.
  • 6Li Ronghua,Pang W K,Wang Qinghe.Numerical analysis for stochastic age-dependent population equations with Poisson jumps[J].Journal of Mathematical Analysis and Applications.2005,327(2):1214-1224.
  • 7Albert Gardon.The Order of Approximatons for Solutions of It(o)-Type stochastic Differential Equations with Jumps[J].Stochastic Analysis and Applications.2004,22(3):679-699.
  • 8Hida, T., White noise analysis and its applications, Proc. Int. Mathematical Conf., L.H.Y. Chen, North-Holland, 1982, 43-48.
  • 9Kondratiev, Y., Da silva, J.L. and Streit, L., Generalized Appell systems, Methods Funct. Anal. Topology, 3(1997), 28-61.
  • 10Kondratiev, Y., Da silva, J.L., Streit, L. and Us, G., Analysis on Poisson and Gamma spaces, Infin. Dim. Anal. Quantum Probab. Relat. Top., 1(1998), 91-117.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部