期刊文献+

具免疫应答和细胞内部时滞的HIV-1感染模型的稳定性分析 被引量:8

Stability Analysis of a HIV-1 Infection Model with Cell-mediated Immune Response and Intracellular Delay
原文传递
导出
摘要 考虑了CTLs免疫应答和细胞内部时滞建立HIV-1感染的数学模型.对模型的无感染平衡点全局稳定性进行了分析,对CTLs未激活和CTLs已激活的感染平衡点给出了局部稳定的充分条件.数值模拟支持了得到的理论结果. In this paper,a model for HIV-1 infection with intracellular delay and cell-mediated immune response is coiisidered.The global stability of the infection-free equilibrium is analyzed,and the sufficient conditions of local stability of the CTLs-absent infection equilibrium and CTLs-present infection equilibrium are obtained.We also perform some numerical simulations which support the obtained theoretical results.
出处 《生物数学学报》 CSCD 北大核心 2010年第4期664-674,共11页 Journal of Biomathematics
基金 湖南省自然科学基金资助项目(07JJ3001) 南华大学博士科研启动基金项目(5-XQD-2006-8) 南华大学留学归国基金项目(2007XQD14)
关键词 免疫应答 时滞 稳定 HIV-1感染 Immune response Delay Stability HIV-1 infection
  • 相关文献

参考文献17

  • 1Perelson A, Nelson P. Mathematical analysis of HIV-1 dynamics in vivo[J]. Society for Industrial and Applied Mathematics Review, 1999, 41(1):3-44.
  • 2Culshaw R, Ruan S, Spiteri R. Optimal HIV treatment by maximizing imnmne response[J]. Journal of Mathematical Biology, 2004, 48(5):545-562.
  • 3Zhu H, Zou X. Dynamics of a HIV-1 Infection model with cell-mediatecl immune response and intracellular delay[J]. Discrete and Continuous Dynamical Systems-B, 2009, 12(1):513-526.
  • 4Martin Nowak A, Nomak, Robert M. May, Virus Dynamics[M]. New York: Oxford University Press, 2000.
  • 5Gyori I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications[M]. Oxford: Clarendon Press, 1991.
  • 6郑重武,张凤琴.一类具有抗体免疫反应的病毒动力学模型的全局性态[J].北京工商大学学报(自然科学版),2009,27(6):62-65. 被引量:2
  • 7Busenberg S, Cooke K L. Vertically Transmitted Diseases, Model and Dynamics(Biomathematics.23)[M]. New York: Springer, 1993.
  • 8Beretta E, Kuang Y. Geometric stability switch criteria in delay differential systems with delay dependent parameters[J]. SIAM J. Math. Anal, 2002, 33 (5):1144-1165.
  • 9Kajiwara T, Sasaki T. A note on the stability analysis of pathogen-immune interaction dynamics[J]. Discrete and Continuous Dynamical Systems-Series B, 2004, 4(3):615-622.
  • 10Liu W. Nonlinear oscillation in models of immune response to persistent viruses[J]. Theor.Popul.Biol, 1997, 52(3):224-230.

二级参考文献24

  • 1闫萍,吴昭英.具潜伏期的无免疫型传染病动力学的微分模型[J].生物数学学报,2006,21(1):47-56. 被引量:22
  • 2李大潜.传染病动力学的一个偏微分方程模型[J].高校应用数学学报,1986,1(9):17-26.
  • 3李大潜.非终身免疫型传染病动力学的偏微模型[J].生物数学学报,1986,(1):29-36.
  • 4马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2007.
  • 5HaiyanPang WendiWang KaifaWang.Global properties of virus dynamics with CTL immune response.西南师范大学学报:自然科学版,2005,30:796-799.
  • 6Andrei K. Global properties of basic virus dynamics models[ J ]. Bulletin of Mathematical Biology, 2004 ( 66 ) : 879 - 883.
  • 7Tsuyoshi K, Toru S. A note on the stability analysis of patheogen-immune interaction dynamics[J]. Discrete and continuous Dynamical System Series B4, 2004(B4) : 615 - 622.
  • 8Lasalle J P. The stablity of dynamical systems [ M ]. Philadelphia: SIAM, Philadelphia, 1976.
  • 9Goh B S. Management and Analysis of Biological Populations[M]. Amsterdam: Elsevier Science, 1980.
  • 10Takeuchi Y. Global properties of Lotka-Volterra systems I'M]. Singapore: World Scientific, 1996.

共引文献44

同被引文献54

  • 1张树林.人类免疫缺陷病毒感染的免疫发病机理[J].国外医学(微生物学分册),1994,17(2):63-65. 被引量:1
  • 2庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 3柏雪莲,张珍,刘克义.人类免疫缺陷病毒感染的免疫学(英文)[J].中国热带医学,2005,5(9):1935-1938. 被引量:3
  • 4Levy.艾滋病病毒与艾滋病的发病机制[M].北京:科学出版社,2000.
  • 5Patrick W.Nelson,Michael A.Gilchrist,Daniel Coombs,et al.An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells[J].Math.Biosci.Engineering,2004,1(2):267-288.
  • 6Huiyan Zhu,Xingfu Zou.Dynamics of a HIV-1 Infection model with cell-mediated immune response and intracellular delay[J].Discrete and Continuous Dynamical Systems seriers B,2009,12(2):513-526.
  • 7Iannelli M.Mathematical Theory of Age-structured Population Dynamics[M].Giardini,Pisa:Applied Mathematics Monographs 7.Consiglio Nazionale Dell Ricerche(C.N.R.),1995.
  • 8Webb G.Theory of Nonlinear Age-dependent Population Dynamics[M].New York:Marcel Dekker,1985.
  • 9Hethcote H.The Mathematics of Infectious Diseases[J].SIAM Review,2000,42(4):599-653.
  • 10Dieudonne J.Foundations of Modern Analysis[M].New York:Academic Press,1960.

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部