期刊文献+

两类四阶微分算子积的自伴性 被引量:1

THE SELF-ADJOINTNESS OF TWO CLASSES OF 4TH-ORDER DIFFERENTIAL OPERATORS PRODUCT
下载PDF
导出
摘要 本文利用自伴算子的基本理论及矩阵运算,讨论了由不同的两个微分算式D(4)+D(2)qi(t)(i=1,2)(t∈I=[a,b])生成的两个微分算子Li(i=1,2)积L1L2的自伴性问题,并在常型情况下,获得了积算子自伴的充分必要条件。 In this paper,the problem of the self-adjointness of product of operator generated by two different differential expressions is investigated.And when is non-singular differential operators,we apply the theory of selfadjoint operators as well as matix operations and obtain the sufficient and necessary conditions which product operator is self-adjoint.
作者 玉林 王万义
出处 《内蒙古农业大学学报(自然科学版)》 CAS 北大核心 2010年第4期259-263,共5页 Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金 国家自然科学基金(10961019) 内蒙古自治区科学基金项目(2009MS0114) 内蒙古师范大学自然科学基金(CXIJS08079)
关键词 微分算子 积算子 自伴 Differential operators product operators self-adjoint
  • 相关文献

参考文献8

  • 1曹之江 刘景麟.奇异对称微分算子的亏指数理论[J].数学进展,1983,12(3):161-178.
  • 2Kauffman R M , Read T , Zettl A. The Deficiency Index Problem of Powers of Ordinary Differential Expressions[M]. Lecture Notes in Math ,621 ,Berlin ,New York : Springer2Verlag , 1977.
  • 3Race D , Zettl A. On the commutativity of certain quasi2differential expression I [J]. J LondonMathSoc , 1990 ,42 (2) :489 - 504.
  • 4边学军.二阶自伴微分算子方幂的自伴性[J].内蒙古大学学报(自然科学版),1996,27(1):1-10. 被引量:10
  • 5曹之江,孙炯,EdmundsD.E..二阶微分算子积的自伴性[J].数学学报(中文版),1999,42(4):649-654. 被引量:11
  • 6杨传富,黄振友,杨孝平.两个四阶微分算子积的自伴性[J].数学进展,2004,33(3):291-302. 被引量:7
  • 7曹之江.常微分算子[M].上海:上海科技出版社,1986..
  • 8Coddington E. A.. The spectral representation of ordinary selfdifferential operators [J]. Ann of Math, 1954,60 (1) :192-211.

二级参考文献18

  • 1袁小平,内蒙古大学学报,1990年,21卷,1期,35页
  • 2曹之江,常微分算子,1987年
  • 3边学军,内蒙古大学学报,1996年,27卷,1期,1页
  • 4Sun Jiong,Acta Math Sin New Ser,1986年,2卷,2期,152页
  • 5Cao Zhijiang,Ordinary Differential Operators,1986年
  • 6Cao Zhijiang,Acta Math Sin New Ser,1985年,1卷,3期,175页
  • 7Cao Zhijiang,Adv Math,1983年,12卷,3期,161页
  • 8Edmunds D E, Evans W D. Spectral Theory and Differential Operators [M]. Oxford: Oxford University Press, 1987.
  • 9Kauffman R, Read T, Zettl A. The Deficiency Index Problem of Powers of Ordinary Differential Expressions[M]. Lect. Notes in Math. 621, Berlin, New York: Springer-Verlag, 1977.
  • 10Liu Jinglin. On the Calkin approach of self-adjoint extensions of symmetric operators [J]. (in Chinese), J Inner Mongolia University, 1988, 19(4): 573-587.

共引文献23

同被引文献17

  • 1王木平,孙可伟,柴希娟,常静.聚乙烯废弃物复合材料的化学改性研究[J].云南化工,2007,34(2):7-10. 被引量:1
  • 2Aurrekoetxea J, Sarrionandia M, Gomez X. Effects of microstructure on wear behaviour of wood reinforced polypropylene composite[J]. Wear, 2008, 265 (5/6): 606-611.
  • 3Faruk O, Laurent M, Matuana. Namoclay reinforced HDPE as a matrix for wood-plastic composites [J]. Compos SciTechnol, 2008, 68 (9): 2073--2077.
  • 4Fornasieri M, Alves J W, Muniz E C, et al. Synthesis and characterization of polyurethane composites of wood waste and polyols from chemically recycled pet [J]. Compos, 2011, 42 (2): 189--195.
  • 5James S, Fabiyi, Armando G, et al. Effect of species on property and weathering performance of wood plastic composites [J]. Compos Part A.. Appl Sci Manu, 2010, 14 (10): 1434--1440.
  • 6Zheng Y T, Cao D R, Wang D S, et al. Study on the interface modification of bagasse fibre and the mechanical properties of its composite with PVC [J]. Compos Part A, 2007, 38 (1): 20--25.
  • 7Qiao X Y, Zhang R, Zhang Y X, et al. Ink-eliminated waste paper sludge flour-filled polypropylene composites with different coupling agent treatments [J]. J Appl Polym Sci, 2003, 89 (2): 513--520.
  • 8Sgriccia N, Hawley M C, Misra M. Characterization of natural fiber surfaces and natural fiber composites [J]. Compos Part A: Appl SciManu, 2008, 39 (10): 1632-1637.
  • 9El-Meligy M G, El-Zawawy W K, Ibrahim M M. Lignocellulosic composite [J]. Polym Adv Technol, 2004, 15 (12): 738--745.
  • 10Van Krevelen D W, Hoftyzer P J. Properties of polymers, their estimation and correlation with chemical structure [M]. New York: Elsevier Scientific Pub Co, 1976: 121--127.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部