期刊文献+

互补设计在Lee偏差下的均匀性 被引量:2

Uniformity in complementary designs in term of Lee discrepancy
下载PDF
导出
摘要 针对两类特殊的二、三混水平部分因子设计d=(D■),在适当的划分下分别给出了互补设计的Lee偏差与子设计D()的广义字长型和均匀性模式的解析关系,同时给出了Lee偏差的下界,最后通过两个例子来验证其结论. This paper considers two special kinds of designs d=(D|D) with two and three mixed levels. Under a proper decomposition, it gives connections between uniformity measured by Lee discrepancy and generalized word length pattern or uniformity pattern for a pair of complementary designs d and presents a lower bound of Lee discrepancy of this kind of fractional factorials. Finally, two illustrative examples are given to shown our theoretical results.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期1-5,共5页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金(10671080) 教育部新世纪优秀人才支持计划项目(06-672) 湖南省教育厅科研项目(10C1091)
关键词 互补设计 Lee偏差 混水平因子设计 均匀设计 complementary design Lee discrepancy mixed level factorials uniform design
  • 相关文献

参考文献7

  • 1FANG Kaitai QIN Hong.Uniformity pattern and related criteria for two-level factorials[J].Science China Mathematics,2005,48(1):1-11. 被引量:16
  • 2Qin H.Characterization of generalized aberration of some designs in terms of their complementary designs[J].J Stat Plann Infer,2003,117:141-151.
  • 3Luis B M,Carlos V A.Complete classification of (12,4,3)-RBIBDs[J].J Combin Designs,2001,9:385-400.
  • 4Zhang S L,Qin H.Minimum projection uniformity criterion and its application[J].Statist Probab Letters,2006,76:634-640.
  • 5Zhou Y D,Ning J H,Song X B.Lee discrepancy and its applications in experimental designs[J].Statist Probab Letters,2008,78:1933-1942.
  • 6Hickernell F J,Liu M Q.Uniform designs limit aliasing[J].Biometrika,2002,89:893-904.
  • 7Ma C X,Fang K T.A note on generalized aberration factorial designs[J].Metrika,2001,53:85-93.

二级参考文献1

  • 1Chang-Xing Ma,Kai-Tai Fang.A note on generalized aberration in factorial designs[J].Metrika.2001(1)

共引文献15

同被引文献12

  • 1FANG Kaitai QIN Hong.Uniformity pattern and related criteria for two-level factorials[J].Science China Mathematics,2005,48(1):1-11. 被引量:16
  • 2Hickernell F J, Liu M Q. Uniform designs limit aliasing[J]. Biometrika, 2002, 89:893-904.
  • 3Chatterjee K, Qin H. Generalized discrete discrepancy and its applications in experimental designs[J]. J Stat Plann In- fer,2011, 141: 951-960.
  • 4Qin H. Characterization of generalized aberration of some de- signs in terms of their complementary design [J]. J Stat Plann Infer, 2003, 117: 141-151.
  • 5Ma C X, Fang K T. A note on generalized aberration factori aldesigns[J]. Metrika,2001, 53: 85-93.
  • 6Zhang S L, Qin H. Minimum projection uniformity criterion and its application[J]. Statist Probab Letters, 2006, 76: 634-640.
  • 7Luis B M, Carlos V. A complete classification of (12,4,3)- RBIBDs[J]. J Combin Designs, 2001, 9 : 385-400.
  • 8HICKERNELL F J, LIU M Q. Uniform designs limit aliasing[ J]. Biometrika, 2002, 89:893 -904.
  • 9CHATFERJEE K, QIN H. Generalized discrete discrepancy and its applications in experimental designs [ J ] cal Planning and Inference, 2011, 141:951 -960.
  • 10QIN H. Characterization of generalized aberration of some designs in terms of their complementary design[ J] cal Planning and Inference, 2003, 117 : 141 - 151.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部